scholarly journals High-frequency glacial lake mapping using time series of Sentinel-1A/1B SAR imagery: An assessment for southeastern Tibetan Plateau

2019 ◽  
Author(s):  
Meimei Zhang ◽  
Fang Chen ◽  
Bangsen Tian ◽  
Dong Liang ◽  
Aqiang Yang

Abstract. Glacial lakes are important component of the cryosphere in the Tibetan Plateau. In response to climate warming, they threaten the downstream lives, ecological environment and public infrastructures through outburst floods in a short time. Although most of the efforts have been made to extract glacial lake outlines and detect their changes with remotely sensed images, the temporal frequency and spatial resolution of glacial lake datasets are generally not fine enough to reflect the detailed process of glacial lake dynamics, especially for potentially dangerous glacial lakes with high-frequency variability. By using a full time-series Sentinel-1A/1B imagery during a year, this study presents a new systematic method to extract the glacial lake outlines with fast variability in southeastern Tibetan Plateau at the time interval of six days. Our approach was based on the level-set segmentation, combined with a median pixel compositing of SAR backscattering coefficients stacks as regularization term, to robustly estimate the lake extent across the observed time range. The mapping results were validated against with manually digitized lake outlines derived from GF-2 PMS imagery, with the overall accuracy and Kappa coefficient of 96.54 % and 0.95, respectively. In comparison with results from classical supervised SVM and unsupervised ISODATA methods, the proposed method proves to be much more robust and effective to detect glacial lakes with irregular boundaries and that have similar backscattering with surroundings. This study also demonstrates the feasibility of time-series Sentinel-1A/1B SAR data in continuous monitoring of glacial lake outline dynamics.

Author(s):  
Meimei Zhang ◽  
Fang Chen ◽  
Bangsen Tian ◽  
Dong Liang ◽  
Aqiang Yang

Glacial lakes are an important component of the cryosphere in the Tibetan Plateau. In response to climate warming, they threaten the downstream lives, ecological environment, and public infrastructures through outburst floods within a short time. Although most of the efforts have been made toward extracting glacial lake outlines and detect their changes with remotely sensed images, the temporal frequency and spatial resolution of glacial lake datasets are generally not fine enough to reflect the detailed processes of glacial lake dynamics, especially for potentially dangerous glacial lakes with high-frequency variability. By using full time-series Sentinel-1A/1B imagery over a year, this study presents a new systematic method to extract the glacial lake outlines that have a fast variability in the southeastern Tibetan Plateau with a time interval of six days. Our approach was based on a level-set segmentation, combined with a median pixel composition of synthetic aperture radar (SAR) backscattering coefficients stacked as a regularization term, to robustly estimate the lake extent across the observed time range. The mapping results were validated against manually digitized lake outlines derived from Gaofen-2 panchromatic multi-spectral (GF-2 PMS) imagery, with an overall accuracy and kappa coefficient of 96.54% and 0.95, respectively. In comparison with results from classical supervised support vector machine (SVM) and unsupervised Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA) methods, the proposed method proved to be much more robust and effective at detecting glacial lakes with irregular boundaries that have similar backscattering as the surroundings. This study also demonstrated the feasibility of time-series Sentinel-1A/1B SAR data in the continuous monitoring of glacial lake outline dynamics.


2021 ◽  
Author(s):  
Xiangyang Dou ◽  
Xuanmei Fan ◽  
Ali P. Yunus ◽  
Junlin Xiong ◽  
Ran Tang ◽  
...  

Abstract. As the Third Pole of the Earth and the Water Tower of Asia, Tibetan Plateau (TP) nurtures large numbers of glacial lakes, which are sensitive to global climate change. These lakes modulate the freshwater ecosystem in the region, but concurrently pose severe threats to the valley population by means of sudden glacial lake outbursts and consequent floods (GLOFs). Lack of high-resolution multi-temporal inventory of glacial lakes in TP hampers a better understanding and prediction of the future trend and risk of glacial lakes. Here, we created a multi-temporal inventory of glacial lakes in TP using 30 years record of satellite images (1990–2019), and discussed their characteristics and spatio-temporal evolution over the years. Results showed that their number and area had increased by 3285 and 258.82 km2, respectively in the last 3 decades. We noticed that different regions of TP exhibited varying change rates in glacial lake size; some regions even showed decreasing trend such as the western Pamir and the eastern Hindu Kush because of reduced rainfall rates. The mapping uncertainty is about 17.5 %, lower than other available datasets, thus making our inventory, a reliable one for the spatio-temporal evolution analysis of glacial lakes in TP. Our lake inventory data are freely available at https://doi.org/10.5281/zenodo.5574289 (Dou et al., 2021); it can help to study climate change-glacier-glacial lake-GLOF interactions in the third pole and serve input to various hydro-climatic studies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maoliang Zhang ◽  
Zhengfu Guo ◽  
Sheng Xu ◽  
Peter H. Barry ◽  
Yuji Sano ◽  
...  

AbstractThe episodic growth of high-elevation orogenic plateaux is controlled by a series of geodynamic processes. However, determining the underlying mechanisms that drive plateau growth dynamics over geological history and constraining the depths at which growth originates, remains challenging. Here we present He-CO2-N2 systematics of hydrothermal fluids that reveal the existence of a lithospheric-scale fault system in the southeastern Tibetan Plateau, whereby multi-stage plateau growth occurred in the geological past and continues to the present. He isotopes provide unambiguous evidence for the involvement of mantle-scale dynamics in lateral expansion and localized surface uplift of the Tibetan Plateau. The excellent correlation between 3He/4He values and strain rates, along the strike of Indian indentation into Asia, suggests non-uniform distribution of stresses between the plateau boundary and interior, which modulate southeastward growth of the Tibetan Plateau within the context of India-Asia convergence. Our results demonstrate that deeply-sourced volatile geochemistry can be used to constrain deep dynamic processes involved in orogenic plateau growth.


2021 ◽  
Author(s):  
Junyuan Fei ◽  
Jintao Liu

<p>Highly intermittent rivers are widespread on the Tibetan Plateau and deeply impact the ecological stability and social development downstream. Due to the highly intermittent rivers are small, seasonal variated and heavy cloud covered on the Tibetan Plateau, their distribution location is still unknown at catchment scale currently. To address these challenges, a new method is proposed for extracting the cumulative distribution location of highly intermittent river from Sentinel-1 time series in an alpine catchment on the Tibetan Plateau. The proposed method first determines the proper time scale of extracting highly intermittent river, based on which the statistical features are calculated to amplify the difference between land covers. Subsequently, the synoptic cumulative distribution location is extracted through Random Forest model using the statistical features above as explanatory variables. And the precise result is generated by combining the synoptic result with critical flow accumulation area.  The highly intermittent river segments are derived and assessed in an alpine catchment of Lhasa River Basin. The results show that the the intra-annual time scale is sufficient for highly intermittent river extraction. And the proposed method can extract highly intermittent river cumulative distribution locations with total precision of 0.62, distance error median of 64.03 m, outperforming other existing river extraction method.</p>


2017 ◽  
Vol 11 (5) ◽  
pp. 2329-2343 ◽  
Author(s):  
Taylor Smith ◽  
Bodo Bookhagen ◽  
Aljoscha Rheinwalt

Abstract. High Mountain Asia (HMA) – encompassing the Tibetan Plateau and surrounding mountain ranges – is the primary water source for much of Asia, serving more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow, which is poorly monitored by sparse in situ weather networks. Both the timing and volume of snowmelt play critical roles in downstream water provision, as many applications – such as agriculture, drinking-water generation, and hydropower – rely on consistent and predictable snowmelt runoff. Here, we examine passive microwave data across HMA with five sensors (SSMI, SSMIS, AMSR-E, AMSR2, and GPM) from 1987 to 2016 to track the timing of the snowmelt season – defined here as the time between maximum passive microwave signal separation and snow clearance. We validated our method against climate model surface temperatures, optical remote-sensing snow-cover data, and a manual control dataset (n = 2100, 3 variables at 25 locations over 28 years); our algorithm is generally accurate within 3–5 days. Using the algorithm-generated snowmelt dates, we examine the spatiotemporal patterns of the snowmelt season across HMA. The climatically short (29-year) time series, along with complex interannual snowfall variations, makes determining trends in snowmelt dates at a single point difficult. We instead identify trends in snowmelt timing by using hierarchical clustering of the passive microwave data to determine trends in self-similar regions. We make the following four key observations. (1) The end of the snowmelt season is trending almost universally earlier in HMA (negative trends). Changes in the end of the snowmelt season are generally between 2 and 8 days decade−1 over the 29-year study period (5–25 days total). The length of the snowmelt season is thus shrinking in many, though not all, regions of HMA. Some areas exhibit later peak signal separation (positive trends), but with generally smaller magnitudes than trends in snowmelt end. (2) Areas with long snowmelt periods, such as the Tibetan Plateau, show the strongest compression of the snowmelt season (negative trends). These trends are apparent regardless of the time period over which the regression is performed. (3) While trends averaged over 3 decades indicate generally earlier snowmelt seasons, data from the last 14 years (2002–2016) exhibit positive trends in many regions, such as parts of the Pamir and Kunlun Shan. Due to the short nature of the time series, it is not clear whether this change is a reversal of a long-term trend or simply interannual variability. (4) Some regions with stable or growing glaciers – such as the Karakoram and Kunlun Shan – see slightly later snowmelt seasons and longer snowmelt periods. It is likely that changes in the snowmelt regime of HMA account for some of the observed heterogeneity in glacier response to climate change. While the decadal increases in regional temperature have in general led to earlier and shortened melt seasons, changes in HMA's cryosphere have been spatially and temporally heterogeneous.


2019 ◽  
Vol 64 (7) ◽  
pp. 435-445 ◽  
Author(s):  
Simon Keith Allen ◽  
Guoqing Zhang ◽  
Weicai Wang ◽  
Tandong Yao ◽  
Tobias Bolch

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jiali Luo ◽  
Wenjun Liang ◽  
Pingping Xu ◽  
Haiyang Xue ◽  
Min Zhang ◽  
...  

Tropopause fold is the primary mechanism for stratosphere-troposphere exchange (STE) at the midlatitudes. Investigation of the features of tropopause folds over the Tibetan Plateau (TP) is important since the TP is a hotspot in global STE. In this study, we investigated seasonal features of the tropopause fold events over the TP using the 40-year ERA-Interim reanalysis data. The development of a tropopause folding case is specifically examined. The results show that shallow tropopause folds occur mostly in spring, while medium and deep folds occur mostly in winter. The multiyear mean monthly frequency of shallow tropopause folds over the TP reaches its maximum value of about 7% in May and then decreases gradually to its minimum value of 1% in August and increases again since September. Deep folds rarely occur in summer and autumn. Both the seasonal cycle and seasonal distribution of total tropopause folds over the TP are dominated by shallow folds. The relative high-frequency areas of medium and deep folds are located over the southern edge of the TP. The westerly jet movement controls the displacement of the high-frequency folding region over the TP. The region of high-frequency tropopause folds is located in the southern portion of the plateau in spring and moves northward in summer. The jet migrates back to the south in autumn and is located along about 30°N in winter, and the region where folds occur most frequently also shifts southward correspondingly. A medium fold event that occurred on 29 December 2018 is used to demonstrate the evolution of a tropopause fold case over the TP in winter; that is, the folding structure moves from west to east, the tropopause pressure is greater than 320 hPa over the folding region, while it is about 200 hPa in the surrounding areas, and the stratospheric air with high potential vorticity (PV) is transported from the high latitudes to the plateau by meridional winds. A trajectory model result verifies the transport pathway of the air parcels during the intrusion event.


2014 ◽  
Vol 59 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Cuizhen Wang ◽  
Huadong Guo ◽  
Li Zhang ◽  
Shuangyu Liu ◽  
Yubao Qiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document