scholarly journals Evaluating health hazard of bathing waters affected by combined sewer overflows

Author(s):  
Vasilis Bellos
Author(s):  
Luca Locatelli ◽  
Beniamino Russo ◽  
Montse Martinez

Abstract. Combined Sewer Overflows (CSO) affect bathing water quality of receiving water bodies by bacterial contamination. The aim of this is study is to assess the health hazard of bathing waters affected by CSOs. This is useful for bathing water managers, for risk assessment purposes and for further impact and economical assessments. Contaminant hazard was evaluated based on two novel indicators proposed in this study: the mean duration of insufficient bathing water quality (1) over a period of time (i.e. several years) and (2) after single CSO/rain events. Particularly, a novel correlation between the duration of sea water contamination and the event rainfall volume was developed. Contaminant hazard was assessed through a state-of-the-art coupled urban drainage and sea water quality model that was developed, calibrated and validated based on local observations. Furthermore, hazard assessment was based on a novel statistical analysis of continuous simulations over a 9 year period using the coupled model. Finally, a validation of the estimated hazard is also shown. The health hazard was evaluated for the case study of Badalona (Spain) even though the methodology presented can be considered generally applicable to other urban areas and related receiving bathing water bodies.


2020 ◽  
Vol 20 (5) ◽  
pp. 1219-1232 ◽  
Author(s):  
Luca Locatelli ◽  
Beniamino Russo ◽  
Alejandro Acero Oliete ◽  
Juan Carlos Sánchez Catalán ◽  
Eduardo Martínez-Gomariz ◽  
...  

Abstract. Combined sewer overflows (CSOs) affect bathing water quality of receiving water bodies by bacterial pollution. The aim of this study is to assess the health hazard of bathing waters affected by CSOs. This is useful for bathing water managers, for risk assessment purposes, and for further impact and economic assessments. Pollutant hazard was evaluated based on two novel indicators proposed in this study: the mean duration of insufficient bathing water quality (1) over a period of time (i.e., several years) and (2) after single CSO/rain events. In particular, a novel correlation between the duration of seawater pollution and the event rainfall volume was developed. Pollutant hazard was assessed through a coupled urban drainage and seawater quality model that was developed, calibrated and validated based on local observations. Furthermore, hazard assessment was based on a novel statistical analysis of continuous simulations over a 9-year period using the coupled model. Finally, a validation of the estimated hazard is also shown. The health hazard was evaluated for the case study of Badalona (Spain) even though the methodology presented can be considered generally applicable to other urban areas and related receiving bathing water bodies. The case study presented is part of the EU-funded H2020 project BINGO (Bringing INnovation to OnGOing water management – a better future under climate change).


1996 ◽  
Vol 31 (3) ◽  
pp. 453-472 ◽  
Author(s):  
M. Stirrup

Abstract The Regional Municipality of Hamilton-Wentworth operates a large combined sewer system which diverts excess combined sewage to local receiving waters at over 20 locations. On average, there are approximately 23 combined sewer overflows per year, per outfall. The region’s Pollution Control Plan, adopted by Regional Council in 1992, concluded that the only reasonable means of dealing with large volumes of combined sewer overflow in Hamilton was to intercept it at the outlets, detain it and convey it to the wastewater treatment plant after the storm events. The recommended control strategy relies heavily on off-line storage, with an associated expansion of the Woodward Avenue wastewater treatment plant to achieve target reductions of combined sewer overflows to 1–4 per year on average. The region has begun to implement this Pollution Control Plan in earnest. Three off-line detention storage tanks are already in operation, construction of a fourth facility is well underway, and conceptual design of a number of other proposed facilities has commenced. To make the best possible use of these facilities and existing in-line storage, the region is implementing a microcomputer-based real-time control system. A number of proposed Woodward Avenue wastewater treatment plant process upgrades and expansions have also been undertaken. This paper reviews the region's progress in implementing these control measures.


1994 ◽  
Vol 30 (1) ◽  
pp. 167-175
Author(s):  
Alan H. Vicory ◽  
Peter A. Tennant

With the attainment of secondary treatment by virtually all municipal discharges in the United States, control of water pollution from combined sewer overflows (CSOs) has assumed a high priority. Accordingly, a national strategy was issued in 1989 which, in 1993, was expanded into a national policy on CSO control. The national policy establishes as an objective the attainment of receiving water quality standards, rather than a design storm/treatment technology based approach. A significant percentage of the CSOs in the U.S. are located along the Ohio River. The states along the Ohio have decided to coordinate their CSO control efforts through the Ohio River Valley Water Sanitation Commission (ORSANCO). With the Commission assigned the responsibility of developing a monitoring approach which would allow the definition of CSO impacts on the Ohio, research by the Commission found that very little information existed on the monitoring and assessment of large rivers for the determination of CSO impacts. It was therefore necessary to develop a strategy for coordinated efforts by the states, the CSO dischargers, and ORSANCO to identify and apply appropriate monitoring approaches. A workshop was held in June 1993 to receive input from a variety of experts. Taking into account this input, a strategy has been developed which sets forth certain approaches and concepts to be considered in assessing CSO impacts. In addition, the strategy calls for frequent sharing of findings in order that the data collection efforts by the several agencies can be mutually supportive and lead to technically sound answers regarding CSO impacts and control needs.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1295-1304 ◽  
Author(s):  
C. Jefferies

Visible pollution discharged from two combined sewer overflows were studied using passive Trash Trap devices and the UK Water Research Centre Gross Solids Sampler. Relationships are presented for the number of visible solids and the mass of gross solids discharged during an event. The differences in the behaviour of the overflow types are reported on and they are categorised using the Trash Traps.


Sign in / Sign up

Export Citation Format

Share Document