scholarly journals Similarities between extreme events in the solar-terrestrial system by means of nonextensivity

2011 ◽  
Vol 18 (5) ◽  
pp. 563-572 ◽  
Author(s):  
G. Balasis ◽  
C. Papadimitriou ◽  
I. A. Daglis ◽  
A. Anastasiadis ◽  
I. Sandberg ◽  
...  

Abstract. The dynamics of complex systems are founded on universal principles that can be used to describe disparate problems ranging from particle physics to economies of societies. A corollary is that transferring ideas and results from investigators in hitherto disparate areas will cross-fertilize and lead to important new results. In this contribution, we investigate the existence of a universal behavior, if any, in solar flares, magnetic storms, earthquakes and pre-seismic electromagnetic (EM) emissions, extending the work recently published by Balasis et al. (2011a). A common characteristic in the dynamics of the above-mentioned phenomena is that their energy release is basically fragmentary, i.e. the associated events are being composed of elementary building blocks. By analogy with earthquakes, the magnitude of the magnetic storms, solar flares and pre-seismic EM emissions can be appropriately defined. Then the key question we can ask in the frame of complexity is whether the magnitude distribution of earthquakes, magnetic storms, solar flares and pre-fracture EM emissions obeys the same law. We show that these apparently different extreme events, which occur in the solar-terrestrial system, follow the same energy distribution function. The latter was originally derived for earthquake dynamics in the framework of nonextensive Tsallis statistics.

2016 ◽  
Vol 18 (22) ◽  
pp. 14795-14804 ◽  
Author(s):  
Chavdar Slavov ◽  
Chong Yang ◽  
Luca Schweighauser ◽  
Chokri Boumrifak ◽  
Andreas Dreuw ◽  
...  

We have investigated the ultrafast dynamics of o-, m- and p-bisazobenzenes, which represent elementary building blocks for photoswitchable multiazobenzene nanostructures.


Author(s):  
Alexandros Ioannidis-Pantopikos ◽  
Donat Agosti

In the landscape of general-purpose repositories, Zenodo was built at the European Laboratory for Particle Physics' (CERN) data center to facilitate the sharing and preservation of the long tail of research across all disciplines and scientific domains. Given Zenodo’s long tradition of making research artifacts FAIR (Findable, Accessible, Interoperable, and Reusable), there are still challenges in applying these principles effectively when serving the needs of specific research domains. Plazi’s biodiversity taxonomic literature processing pipeline liberates data from publications, making it FAIR via extensive metadata, the minting of a DataCite Digital Object Identifier (DOI), a licence and both human- and machine-readable output provided by Zenodo, and accessible via the Biodiversity Literature Repository community at Zenodo. The deposits (e.g., taxonomic treatments, figures) are an example of how local networks of information can be formally linked to explicit resources in a broader context of other platforms like GBIF (Global Biodiversity Information Facility). In the context of biodiversity taxonomic literature data workflows, a general-purpose repository’s traditional submission approach is not enough to preserve rich metadata and to capture highly interlinked objects, such as taxonomic treatments and digital specimens. As a prerequisite to serve these use cases and ensure that the artifacts remain FAIR, Zenodo introduced the concept of custom metadata, which allows enhancing submissions such as figures or taxonomic treatments (see as an example the treatment of Eurygyrus peloponnesius) with custom keywords, based on terms from common biodiversity vocabularies like Darwin Core and Audubon Core and with an explicit link to the respective vocabulary term. The aforementioned pipelines and features are designed to be served first and foremost using public Representational State Transfer Application Programming Interfaces (REST APIs) and open web technologies like webhooks. This approach allows researchers and platforms to integrate existing and new automated workflows into Zenodo and thus empowers research communities to create self-sustained cross-platform ecosystems. The BiCIKL project (Biodiversity Community Integrated Knowledge Library) exemplifies how repositories and tools can become building blocks for broader adoption of the FAIR principles. Starting with the above literature processing pipeline, the concepts of and resulting FAIR data, with a focus on the custom metadata used to enhance the deposits, will be explained.


2006 ◽  
Vol 978 ◽  
Author(s):  
Theodor Ackbarow ◽  
Markus J. Buehler

AbstractCoiled-coil alpha-helical dimers are the elementary building blocks of intermediate filaments (IFs), an important component of the cell's cytoskeleton. Therefore, IFs play a leading role in the mechanical integrity of the cells. Here we use atomistic simulation to carry out tensile tests on coiled-coils as well as on single alpha-helices of the 2B segment of the vimentin dimer that has been shown to control the large-deformation behavior of cells. We compare the characteristic force-strain curves of both structures and suggest explanations for the differences on this fundamental level of hierarchical assembly. We further systematically explore the strain rate dependence of the mechanical properties of the vimentin coiled-coil protein. We develop a simple continuum model capable of reproducing the atomistic modeling results. The model enables us to extrapolate to much lower deformation rates approaching those used in experiment.


2010 ◽  
Vol 132 (44) ◽  
pp. 15632-15636 ◽  
Author(s):  
Nadav Amdursky ◽  
Michel Molotskii ◽  
Ehud Gazit ◽  
Gil Rosenman

2004 ◽  
Vol 19 (24) ◽  
pp. 4127-4163 ◽  
Author(s):  
A. ALEXANDROV ◽  
A. MOROZOV ◽  
A. MIRONOV

Even though matrix model partition functions do not exhaust the entire set of τ-functions relevant for string theory, they seem to be elementary building blocks for many others and they seem to properly capture the fundamental symplicial nature of quantum gravity and string theory. We propose to consider matrix model partition functions as new special functions. Here we restrict our consideration to the finite-size Hermitian 1-matrix model and concentrate mostly on its phase/branch structure arising when the partition function is considered as a D-module. We discuss the role of the CIV–DV prepotential (as generating a possible basis in the linear space of solutions to the Virasoro constraints, but with a lack of understanding of why and how this basis is distinguished).


2020 ◽  
Vol 17 (171) ◽  
pp. 20200543
Author(s):  
Jonathan Hiller ◽  
Joni Mici ◽  
Hod Lipson

Many complex natural and artificial systems are composed of large numbers of elementary building blocks, such as organisms made of many biological cells or processors made of many electronic transistors. This modular substrate is essential to the evolution of biological and technological complexity, but has been difficult to replicate for mechanical systems. This study seeks to answer if layered assembly can engender exponential gains in the speed and efficacy of block or cell-based manufacturing processes. A key challenge is how to deterministically assemble large numbers of small building blocks in a scalable manner. Here, we describe two new layered assembly principles that allow assembly faster than linear time, integrating n modules in O( n 2/3 ) and O( n 1/3 ) time: one process uses a novel opto-capillary effect to selectively deposit entire layers of building blocks at a time, and a second process jets building block rows in rapid succession. We demonstrate the fabrication of multi-component structures out of up to 20 000 millimetre scale spherical building blocks in 3 h. While these building blocks and structures are still simple, we suggest that scalable layered assembly approaches, combined with a growing repertoire of standardized passive and active building blocks could help bridge the meso-scale assembly gap, and open the door to the fabrication of increasingly complex, adaptive and recyclable systems.


2007 ◽  
Vol 90 (22) ◽  
pp. 223115 ◽  
Author(s):  
Zhiping Xu ◽  
Quan-Shui Zheng ◽  
Guanhua Chen

1948 ◽  
Vol 20 (1) ◽  
pp. 350-352 ◽  
Author(s):  
H. V. Neher ◽  
W. C. Roesch

Sign in / Sign up

Export Citation Format

Share Document