Supplementary material to "Exploring the Lyapunov instability properties of high-dimensional atmospheric and climate models"

Author(s):  
Lesley De Cruz ◽  
Sebastian Schubert ◽  
Jonathan Demaeyer ◽  
Valerio Lucarini ◽  
Stéphane Vannitsem
2017 ◽  
Vol 8 (2) ◽  
pp. 429-438 ◽  
Author(s):  
Francine J. Schevenhoven ◽  
Frank M. Selten

Abstract. Weather and climate models have improved steadily over time as witnessed by objective skill scores, although significant model errors remain. Given these imperfect models, predictions might be improved by combining them dynamically into a so-called supermodel. In this paper a new training scheme to construct such a supermodel is explored using a technique called cross pollination in time (CPT). In the CPT approach the models exchange states during the prediction. The number of possible predictions grows quickly with time, and a strategy to retain only a small number of predictions, called pruning, needs to be developed. The method is explored using low-order dynamical systems and applied to a global atmospheric model. The results indicate that the CPT training is efficient and leads to a supermodel with improved forecast quality as compared to the individual models. Due to its computational efficiency, the technique is suited for application to state-of-the art high-dimensional weather and climate models.


2020 ◽  
Author(s):  
Maximilian Gelbrecht ◽  
Jürgen Kurths ◽  
Frank Hellmann

<p>Many high-dimensional complex systems such as climate models exhibit an enormously complex landscape of possible asymptotic state. On most occasions these are challenging to analyse with traditional bifurcation analysis methods. Often, one is also more broadly interested in classes of asymptotic states. Here, we present a novel numerical approach prepared for analysing such high-dimensional multistable complex systems: Monte Carlo Basin Bifurcation Analysis (MCBB).<span>  </span>Based on random sampling and clustering methods, we identify the type of dynamic regimes with the largest basins of attraction and track how the volume of these basins change with the system parameters. In order to due this suitable, easy to compute, statistics of trajectories with randomly generated initial conditions and parameters are clustered by an algorithm such as DBSCAN. Due to the modular and flexible nature of the method, it has a wide range of possible applications. While initially oscillator networks were one of the main applications of this methods, here we present an analysis of a simple conceptual climate model setup up by coupling an energy balance model to the Lorenz96 system. The method is available to use as a package for the Julia language.<span> </span></p>


2018 ◽  
Author(s):  
Adria K. Schwarber ◽  
Steven J. Smith ◽  
Corinne A. Hartin ◽  
Benjamin Aaron Vega-Westhoff ◽  
Ryan Sriver

Author(s):  
Patrick C. Taylor ◽  
Robyn C. Boeke ◽  
Ying Li ◽  
David W. J. Thompson

Sign in / Sign up

Export Citation Format

Share Document