scholarly journals A wind-driven nonseasonal barotropic fluctuation of the Canadian inland seas

Ocean Science ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 175-185 ◽  
Author(s):  
C. G. Piecuch ◽  
R. M. Ponte

Abstract. A wind-driven, spatially coherent mode of nonseasonal, depth-independent variability in the Canadian inland seas (i.e., the collective of Hudson Bay, James Bay, and Foxe Basin) is identified based on Gravity Recovery and Climate Experiment (GRACE) retrievals, a tide-gauge record, and a barotropic model over 2003–2013. This dominant mode of nonseasonal variability is correlated with the North Atlantic Oscillation and is associated with net flows into and out of the Canadian inland seas; the anomalous inflows and outflows, which are reflected in mean sea level and bottom pressure changes, are driven by wind stress anomalies over Hudson Strait, probably related to wind setup, as well as over the northern North Atlantic Ocean, possibly mediated by various wave mechanisms. The mode is also associated with mass redistribution within the Canadian inland seas, reflecting linear response to local wind stress variations under the combined influences of rotation, gravity, and variable bottom topography. Results exemplify the usefulness of GRACE for studying regional ocean circulation and climate.

2014 ◽  
Vol 11 (5) ◽  
pp. 2337-2365
Author(s):  
C. G. Piecuch ◽  
R. M. Ponte

Abstract. A wind-driven, spatially coherent mode of nonseasonal, depth-independent variability in the Canadian Inland Seas (i.e., the collective of Hudson Bay, James Bay, and Foxe Basin) is identified based on Gravity Recovery and Climate Experiment (GRACE) retrievals, a tide-gauge record, and a barotropic model over 2003–2013. This dominant mode of nonseasonal variability is partly related to the North Atlantic Oscillation and is associated with net flows into and out of the Canadian Inland Seas; the anomalous inflows and outflows, which are reflected in mean sea level and bottom pressure changes, are driven by wind stress anomalies over Hudson Strait, possibly related to wind setup, as well as over the northern North Atlantic Ocean, potentially mediated by various wave mechanisms. The mode is also associated with mass redistribution within the Canadian Inland Seas, reflecting linear response to local wind stress variations under the combined influences of rotation, gravity, and variable bottom topography. Results exemplify the usefulness of GRACE for studying regional ocean circulation and climate.


2004 ◽  
Vol 34 (12) ◽  
pp. 2792-2807 ◽  
Author(s):  
Lianke te Raa ◽  
Jeroen Gerrits ◽  
Henk A. Dijkstra

Abstract The aim of this paper is to identify the physical mechanism of interdecadal variability in simulations of the North Atlantic Ocean circulation with the Modular Ocean Model of the Geophysical Fluid Dynamics Laboratory. To that end, a hierarchy of increasingly complex model configurations is used. The variability in the simplest case, that of viscous, purely thermally driven flows in a flat-bottom ocean basin with a box-shaped geometry, is shown to be caused by an internal interdecadal mode. The westward propagation of temperature anomalies and the phase difference between the anomalous zonal and meridional overturning that characterize the interdecadal mode are used as “fingerprints” of the physical mechanism of the variability. In this way, the variability can be followed toward a less viscous regime in which the effects of continental geometry and bottom topography are also included. It is shown that, although quantitative aspects of the variability like period and spatial pattern are changing, the physical mechanism of the interdecadal variability in the more complex simulations can be attributed to the same processes as in the simplest model configuration.


2021 ◽  
Author(s):  
Leonard F. Borchert ◽  
Alexander J. Winkler

<p>Vegetation in the northern high latitudes shows a characteristic pattern of persistent changes as documented by multi-decadal satellite observations. The prevailing explanation that these mainly increasing trends (greening) are a consequence of external CO<sub>2</sub> forcing, i.e., due to the ubiquitous effect of CO2-induced fertilization and/or warming of temperature-limited ecosystems, however does not explain why some areas also show decreasing trends of vegetation cover (browning). We propose here to consider the dominant mode of multi-decadal internal climate variability in the north Atlantic region, the Atlantic Multidecadal Variability (AMV), as the missing link in the explanation of greening and browning trend patterns in the northern high latitudes. Such a link would also imply potential for decadal predictions of ecosystem changes in the northern high latitudes.</p><p>An analysis of observational and reanalysis data sets for the period 1979-2019 shows that locations characterized by greening trends largely coincide with warming summer temperature and increasing precipitation. Wherever either cooling or decreasing precipitation occurs, browning trends are observed over this period. These precipitation and temperature patterns are significantly correlated with a North Atlantic sea surface temperature index that represents the AMV signal, indicating its role in modulating greening/browning trend patterns in the northern high latitudes.</p><p>Using two large ensembles of coupled Earth system model simulations (100 members of MPI-ESM-LR Grand Ensemble and 32 members of the IPSL-CM6A-LR Large Ensemble), we separate the greening/browning pattern caused by external CO<sub>2</sub> forcing from that caused by internal climate variability associated with the AMV. These sets of model simulations enable a clean separation of the externally forced signal from internal variability. While the greening and browning patterns in the simulations do not agree with observations in terms of magnitude and location, we find consistent internally generated greening/browning patterns in both models caused by changes in temperature and precipitation linked to the AMV signal. These greening/browning trend patterns are of the same magnitude as those caused by the external forcing alone. Our work therefore shows that internally-generated changes of vegetation in the northern lands, driven by AMV, are potentially as large as those caused by external CO<sub>2</sub> forcing. We thus argue that the observed pattern of greening/browning in the northern high latitudes could originate from the combined effect of rising CO<sub>2</sub> as well as the AMV.</p>


2011 ◽  
Vol 8 (6) ◽  
pp. 12451-12476 ◽  
Author(s):  
N. R. Bates

Abstract. Natural climate variability impacts the multi-decadal uptake of anthropogenic carbon dioxide (Cant) into the North Atlantic Ocean subpolar and subtropical gyres. Previous studies have shown that there is significant uptake of CO2 into the subtropical mode water (STMW) that forms south of the Gulf Stream in winter and constitutes the dominant upper-ocean water mass in the subtropical gyre of the North Atlantic Ocean. Observations at the Bermuda Atlantic Time-series Study (BATS) site near Bermuda show an increase in dissolved inorganic carbon (DIC) of +1.51 ± 0.08 μmol kg−1 yr−1 between 1988 and 2011. It is estimated that the sink of CO2 into STMW was 0.985 ± 0.018 Pg C (Pg = 1015 g C) between 1988 and 2011 (~70 % of which is due to uptake of Cant). However, the STMW sink of CO2 was strongly coupled to the North Atlantic Oscillation (NAO) with large uptake of CO2 into STMW during the 1990s (NAO positive phase). In contrast, uptake of CO2 into STMW was much reduced in the 2000s during the NAO neutral/negative phase. Thus, NAO induced variability of the STMW CO2 sink is important when evaluating multi-decadal changes in North Atlantic Ocean CO2 sinks.


2014 ◽  
Vol 44 (1) ◽  
pp. 179-201 ◽  
Author(s):  
Nicolas Barrier ◽  
Christophe Cassou ◽  
Julie Deshayes ◽  
Anne-Marie Treguier

Abstract A new framework is proposed for investigating the atmospheric forcing of North Atlantic Ocean circulation. Instead of using classical modes of variability, such as the North Atlantic Oscillation (NAO) or the east Atlantic pattern, the weather regimes paradigm was used. Using this framework helped avoid problems associated with the assumptions of orthogonality and symmetry that are particular to modal analysis and known to be unsuitable for the NAO. Using ocean-only historical and sensitivity experiments, the impacts of the four winter weather regimes on horizontal and overturning circulations were investigated. The results suggest that the Atlantic Ridge (AR), negative NAO (NAO−), and positive NAO (NAO+) regimes induce a fast (monthly-to-interannual time scales) adjustment of the gyres via topographic Sverdrup dynamics and of the meridional overturning circulation via anomalous Ekman transport. The wind anomalies associated with the Scandinavian blocking regime (SBL) are ineffective in driving a fast wind-driven oceanic adjustment. The response of both gyre and overturning circulations to persistent regime conditions was also estimated. AR causes a strong, wind-driven reduction in the strengths of the subtropical and subpolar gyres, while NAO+ causes a strengthening of the subtropical gyre via wind stress curl anomalies and of the subpolar gyre via heat flux anomalies. NAO− induces a southward shift of the gyres through the southward displacement of the wind stress curl. The SBL is found to impact the subpolar gyre only via anomalous heat fluxes. The overturning circulation is shown to spin up following persistent SBL and NAO+ and to spin down following persistent AR and NAO− conditions. These responses are driven by changes in deep water formation in the Labrador Sea.


2016 ◽  
Vol 29 (13) ◽  
pp. 4801-4816 ◽  
Author(s):  
Christopher G. Piecuch ◽  
Sönke Dangendorf ◽  
Rui M. Ponte ◽  
Marta Marcos

Abstract Understanding the relationship between coastal sea level and the variable ocean circulation is crucial for interpreting tide gauge records and projecting sea level rise. In this study, annual sea level records (adjusted for the inverted barometer effect) from tide gauges along the North American northeast coast over 1980–2010 are compared to a set of data-assimilating ocean reanalysis products as well as a global barotropic model solution forced with wind stress and barometric pressure. Correspondence between models and data depends strongly on model and location. At sites north of Cape Hatteras, the barotropic model shows as much (if not more) skill than ocean reanalyses, explaining about 50% of the variance in the adjusted annual tide gauge sea level records. Additional numerical experiments show that annual sea level changes along this coast from the barotropic model are driven by local wind stress over the continental shelf and slope. This result is interpreted in the light of a simple dynamic framework, wherein bottom friction balances surface wind stress in the alongshore direction and geostrophy holds in the across-shore direction. Results highlight the importance of barotropic dynamics on coastal sea level changes on interannual and decadal time scales; they also have implications for diagnosing the uncertainties in current ocean reanalyses, using tide gauge records to infer past changes in ocean circulation, and identifying the physical mechanisms responsible for projected future regional sea level rise.


Author(s):  
Thomas Önskog ◽  
Christian L. E. Franzke ◽  
Abdel Hannachi

Abstract. The North Atlantic Oscillation (NAO) is the dominant mode of climate variability over the North Atlantic basin and has a significant impact on seasonal climate and surface weather conditions. This is the result of complex and nonlinear interactions between many spatio-temporal scales. Here, the authors study a number of linear and nonlinear models for a station-based time series of the daily winter NAO index. It is found that nonlinear autoregressive models, including both short and long lags, perform excellently in reproducing the characteristic statistical properties of the NAO, such as skewness and fat tails of the distribution, and the different timescales of the two phases. As a spin-off of the modelling procedure, we can deduce that the interannual dependence of the NAO mostly affects the positive phase, and that timescales of 1 to 3 weeks are more dominant for the negative phase. Furthermore, the statistical properties of the model make it useful for the generation of realistic climate noise.


2017 ◽  
Vol 13 (11) ◽  
pp. 1593-1608 ◽  
Author(s):  
Jasper G. Franke ◽  
Johannes P. Werner ◽  
Reik V. Donner

Abstract. Obtaining reliable reconstructions of long-term atmospheric circulation changes in the North Atlantic region presents a persistent challenge to contemporary paleoclimate research, which has been addressed by a multitude of recent studies. In order to contribute a novel methodological aspect to this active field, we apply here evolving functional network analysis, a recently developed tool for studying temporal changes of the spatial co-variability structure of the Earth's climate system, to a set of Late Holocene paleoclimate proxy records covering the last two millennia. The emerging patterns obtained by our analysis are related to long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). By comparing the time-dependent inter-regional linkage structures of the obtained functional paleoclimate network representations to a recent multi-centennial NAO reconstruction, we identify co-variability between southern Greenland, Svalbard, and Fennoscandia as being indicative of a positive NAO phase, while connections from Greenland and Fennoscandia to central Europe are more pronounced during negative NAO phases. By drawing upon this correspondence, we use some key parameters of the evolving network structure to obtain a qualitative reconstruction of the NAO long-term variability over the entire Common Era (last 2000 years) using a linear regression model trained upon the existing shorter reconstruction.


2020 ◽  
Author(s):  
Abdel Hannachi ◽  
Thomas Önskog ◽  
Christian Franzke

<p>The North Atlantic Oscillation (NAO) is the dominant mode of climate variability over the North Atlantic basin and has a significant impact on seasonal climate and surface weather conditions. This is the result of complex and nonlinear interactions between many spatio-temporal scales. Here, the authors study a number of linear and nonlinear models for a station-based time series of the daily winter NAO index. It is found that nonlinear autoregressive models including both short and long lags perform excellently in reproducing the characteristic statistical properties of the NAO, such as skewness and fat tails of the distribution and the different time scales of the two phases. As a spinoff of the modelling procedure, we are able to deduce that the interannual dependence of the NAO mostly affects the positive phase and that timescales of one to three weeks are more dominant for the negative phase. The statistical properties of the model makes it useful for the generation of realistic climate noise.</p>


Sign in / Sign up

Export Citation Format

Share Document