scholarly journals Eddy surface properties and propagation at Southern Hemisphere western boundary current systems

Ocean Science ◽  
2015 ◽  
Vol 11 (4) ◽  
pp. 629-641 ◽  
Author(s):  
G. S. Pilo ◽  
M. M. Mata ◽  
J. L. L. Azevedo

Abstract. Oceanic eddies exist throughout the world oceans, but are more energetic when associated with western boundary currents (WBC) systems. In these regions, eddies play an important role in mixing and energy exchange. Therefore, it is important to quantify and qualify eddies associated with these systems. This is particularly true for the Southern Hemisphere WBC system where only few eddy censuses have been performed to date. In these systems, important aspects of the local eddy population are still unknown, like their spatial distribution and propagation patterns. Moreover, the understanding of these patterns helps to establish monitoring programs and to gain insight in how eddies would affect local mixing. Here, we use a global eddy data set to qualify eddies based on their surface characteristics in the Agulhas Current (AC), the Brazil Current (BC) and the East Australian Current (EAC) systems. The analyses reveal that eddy propagation within each system is highly forced by the local mean flow and bathymetry. Large values of eddy amplitude and temporal variability are associated with the BC and EAC retroflections, while small values occur in the centre of the Argentine Basin and in the Tasman Sea. In the AC system, eddy polarity dictates the propagation distance. BC system eddies do not propagate beyond the Argentine Basin, and are advected by the local ocean circulation. EAC system eddies from both polarities cross south of Tasmania but only the anticyclonic ones reach the Great Australian Bight. For all three WBC systems, both cyclonic and anticyclonic eddies present a geographical segregation according to radius size and amplitude. Regions of high eddy kinetic energy are associated with the eddies' mean amplitudes, and not with their densities.

2015 ◽  
Vol 12 (1) ◽  
pp. 135-160 ◽  
Author(s):  
G. S. Pilo ◽  
M. M. Mata ◽  
J. L. L. Azevedo

Abstract. Oceanic eddies occur in all world oceans, but are more energetic when associated to western boundary currents (WBC) systems. In these regions, eddies play an important role on mixing and energy exchange. Therefore, it is important to quantify and qualify eddies occurring within these systems. Previous studies performed eddy censuses in Southern Hemisphere WBC systems. However, important aspects of local eddy population are still unknown. Main questions to be answered relate to eddies' spatial distribution, propagation and lifetime within each system. Here, we use a global eddy dataset to qualify eddies based on their surface characteristics at the Agulhas Current (AC), the Brazil Current (BC) and the East Australian Current (EAC) Systems. We show that eddy propagation within each system is highly forced by the local mean flow and bathymetry. In the AC System, eddy polarity dictates its propagation distance. BC system eddies do not propagate beyond the Argentine Basin, and are advected by the local ocean circulation. EAC System eddies from both polarities cross south of Tasmania, but only anticyclonics reach the Great Australian Bight. Eddies in all systems and from both polarities presented a geographical segregation according to size. Large eddies occur along the Agulhas Retroflection, the Agulhas Return Current, the Brazil-Malvinas Confluence and the Coral Sea. Small eddies occur in the systems southernmost domains. Understanding eddies' propagation helps to establish monitoring programs, and to better understand how these features would affect local mixing.


Ocean Science ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 209-222 ◽  
Author(s):  
Michel Michaelovitch de Mahiques ◽  
Till Jens Jörg Hanebuth ◽  
Renata Hanae Nagai ◽  
Marcia Caruso Bícego ◽  
Rubens Cesar Lopes Figueira ◽  
...  

Abstract. In this study, we use inorganic (metal) and organic (bulk and molecular) markers in sediment samples of the south-eastern Brazilian margin to investigate the response of geochemical fingerprints to the complex hydrodynamic processes present in the area. Results indicate the potential of export of terrigenous siliciclastic and organic constituents to the upper slope, even in an area with limited fluvial supply.Metal contents and especially the ln(Ti ∕ Al) and ln(Fe ∕ K) ratios make it possible to recognise the extension of shelf sediments toward the upper slope. Potassium, here expressed as ln(K ∕ Sc) and ln(K ∕ Al) ratios used as proxies of illite–kaolinite variations, proved to be an important parameter, especially because it allowed us to decipher the imprint of the northward flow of the Intermediate Western Boundary Current (IWBC) in comparison to the southward flows of the Brazil Current (BC) and Deep Western Boundary Current (DWBC). Using organic matter analyses, we were able to evaluate the extent of terrestrial contributions to the outer shelf and slope, even without the presence of significant fluvial input. In addition, molecular markers signify a slight increase in the input of C4-derived plants to the slope sediments, transported from distant areas by the main alongshore boundary currents, indicating that the terrestrial fraction of the organic matter deposited on the slope has a distinct origin when compared to shelf sediments.


2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Janini Pereira ◽  
Mauro Cirano ◽  
Martinho Marta-almeida ◽  
Fabiola Negreiros Amorim

The oceanic features in the eastern and southeastern brazilian shelf/slope south of 13S is investigated using ROMS (Regional Ocean Model System). The model integration was 9 years and it was forced with: i) 6-hourly synoptic atmospheric data from NCEP; ii) initial and boundary conditions from OCCAM (Ocean Climate Circulation Advanced Modelling) monthly mean climatology and iii) tidal forcing from TPXO 7.1 global data set. The model results were compared with observations, which consisted in thermodynamic MDL (Mixed Layer Depth) climatology, satellite data, measurements from tide gauges along the shelf and currents measurements values from literature. The simulated currents represented well the BC (Brazil Current)-IWBC (IntermediateWestern Boundary Current) System. The BC - IWBC system at 22S cross-shelf section, where the mean alongshelf velocity represents our simulation capability of reproducing the western boundary currents, showed poleward BC and a opposing IWBC. At this section, the BC velocity core is in 50 m with 0.41 m.s−1 and the IWBC core around 800 m with 0.15 m.s−1.


2016 ◽  
Author(s):  
Michel Michaelovitch de Mahiques ◽  
Till Jens Jörg Hanebuth ◽  
Renata Hanae Nagai ◽  
Marcia Caruso Bícego ◽  
Rubens Cesar Lopes Figueira ◽  
...  

Abstract. In this study, we use inorganic (metals) and organic (bulk and molecular) markers in sediment samples of the southeastern Brazilian margin to investigate the response of geochemical fingerprints to the complex hydrodynamic processes present in the area. Results indicate the potential of export of terrigenous siliciclastic and organic constituents to the upper slope, even in an area with limited fluvial supply. Metal contents and especially the ln(Ti/Al) and ln(Fe/K) ratios make it possible to recognize the extension of shelf sediments toward the upper slope. Potassium, here expressed as ln(K/Sc) and ln(K/Al) ratios used as proxies of illite–kaolinite variations, proved to be an important parameter, especially because it allowed us to decipher the imprint of the northward flow of the Intermediate Western Boundary Current (IWBC) in comparison to the southward flows of the Brazil Current (BC) and Deep Western Boundary Current (DWBC). Using organic matter analyses, we were able to evaluate the extent of terrestrial contributions to the outer shelf and slope, even without the presence of significant fluvial input. In addition, molecular markers signify a slight increase in the input of C4-derived plants to the slope sediments, transported from distant areas by the main alongshore boundary currents, indicating that the terrestrial fraction of the organic matter deposited on the slope has a distinct origin when compared to shelf sediments.


2016 ◽  
Author(s):  
Christopher S. Meinen ◽  
Silvia L. Garzoli ◽  
Renellys C. Perez ◽  
Edmo Campos ◽  
Alberto R. Piola ◽  
...  

Abstract. The Deep Western Boundary Current (DWBC) at 34.5° S in the South Atlantic carries a significant fraction of the cold deep limb of the Meridional Overturning Circulation (MOC), and therefore its variability affects both the meridional heat transport and the regional and global climate. Nearly six years of observations from a line of pressure-equipped inverted echo sounders (PIES) have yielded an unprecedented data set for studying the characteristics of the time-varying DWBC volume transport at 34.5° S. Furthermore, the horizontal resolution of the observing array was greatly improved in December 2012 with the addition of two current-and-pressure-equipped inverted echo sounders (CPIES) at the midpoints of three of the existing sites. Regular hydrographic sections along the PIES/CPIES line confirm the presence of recently-ventilated North Atlantic Deep Water carried by the DWBC. The time-mean absolute geostrophic transport integrated within the DWBC layer, defined between 800–4800 dbar, and within longitude bounds of 51.5° W to 44.5° W is −15 Sv (1 Sv = 106 m3 s−1; negative indicates southward flow). The observed peak-to-peak range in volume transport using these integration limits is from −89 Sv to +50 Sv, and the temporal standard deviation is 23 Sv. Testing different vertical integration limits based on time-mean water-mass property levels yields small changes to these values, but no significant alteration to the character of the transport time series. The time-mean southward DWBC flow at this latitude is confined west of 49.5° W, with recirculations dominating the flow further offshore. As with other latitudes where the DWBC has been observed for multiple years, the time variability greatly exceeds the time-mean, suggesting the presence of strong coherent vortices and/or Rossby Wave-like signals propagating to the boundary from the interior.


2014 ◽  
Vol 32 (2) ◽  
pp. 241 ◽  
Author(s):  
Janini Pereira ◽  
Mariela Gabioux ◽  
Martinho Marta Almeida ◽  
Mauro Cirano ◽  
Afonso M. Paiva ◽  
...  

ABSTRACT. The results of two high-resolution ocean global circulation models – OGCMs (Hybrid Coordinate Ocean Model – HYCOM and Ocean Circulation andClimate Advanced Modeling Project – OCCAM) are analyzed with a focus on the Western Boundary Current (WBC) system of the South Atlantic Ocean. The volumetransports are calculated for different isopycnal ranges, which represent the most important water masses present in this region. The latitude of bifurcation of the zonalflows reaching the coast, which leads to the formation of southward or northward WBC flow at different depths (or isopycnal levels) is evaluated. For the Tropical Water,bifurcation of the South Equatorial Current occurs at 13◦-15◦S, giving rise to the Brazil Current, for the South Atlantic Central Water this process occurs at 22◦S.For the Antarctic Intermediate Water, bifurcation occurs near 28◦-30◦S, giving rise to a baroclinic unstable WBC at lower latitudes with a very strong vertical shearat mid-depths. Both models give similar results that are also consistent with previous observational studies. Observations of the South Atlantic WBC system havepreviously been sparse, consequently these two independent simulations which are based on realistic high-resolution OGCMs, add confidence to the values presentedin the literature regarding flow bifurcations at the Brazilian coast.Keywords: Southwestern Atlantic circulation, water mass, OCCAM, HYCOM. RESUMO. Resultados de dois modelos globais de alta resolução (HYCOM e OCCAM) são analisados focando o sistema de Corrente de Contorno Oeste do Oceano Atlântico Sul. Os transportes de volume são calculados para diferentes níveis isopicnais que representam as principais massas de água da região. É apresentada a avaliação da latitude de bifurcação do fluxo zonal que atinge a costa, permitindo a formação dos fluxos da Corrente de Contorno Oeste para o sul e para o norte emdiferentes níveis de profundidades (ou isopicnal). Para a Água Tropical, a bifurcação da Corrente Sul Equatorial ocorre entre 13◦-15◦S, originando a Corrente do Brasil, e para a Água Central do Atlântico Sul ocorre em 22◦S. A bifurcação daÁgua Intermediária Antártica ocorre próximo de 28◦-30◦S, dando um aumento na instabilidade baroclínica da Corrente de Contorno Oeste em baixas latitudes e com um forte cisalhamento vertical em profundidades intermediárias. Ambos os modelos apresentamresultados similares e consistentes com estudos observacionais prévios. Considerando que as observações do sistema de Corrente de Contorno Oeste do Atlântico Sul são escassas, essas duas simulações independentes com modelos globais de alta resolução adicionam confiança aos valores apresentados na literatura, relacionadosaos fluxos das bifurcações na costa do Brasil.Palavras-chave: circulação do Atlântico Sudoeste, massas de água, OCCAM, HYCOM.


1968 ◽  
Vol 34 (4) ◽  
pp. 721-734 ◽  
Author(s):  
J. A. Johnson

A linear three-dimensional model of the wind-driven ocean circulation is treated by boundary-layer methods. The interior flow, below the Ekman layer, differs from the classical gyres of Munk (1950). There is a north-eastwards transport of fluid from the western boundary current of the southern gyre across the latitude of zero wind stress curl into the northern gyre. A return flow in the Ekman layer preserves continuity.


Author(s):  
Jose Antonio Moreira Lima ◽  
Eric Oliveira Ribeiro ◽  
Wellington Ceccopieri ◽  
Guisela Grossmann Matheson

This paper presents a methodology to estimate deep water design current profiles using Complex Empirical Orthogonal Function (C-EOF) and a structural reliability response based model. The advantage of C-EOF is the capability of directly obtaining directional extreme current profiles. It is estimated that most of the variability of the southeast Brazil current system can be explained by the first two EOF modes. The first mode associated with the southwestward Brazil Current (BC) and the second mode with the northeastward Intermediate Western Boundary Current (IWBC). Thus, only two series of C-EOF amplitudes can be used in the response based technique to estimate the 100-y extreme current values. The methodology can also be used with more EOF modes if required to properly represent the current data. The probabilistic cumulative functions are based on extreme value distributions such as Gumbel or Weibull, and Lognormal for conditional distributions. The evaluation of estimated distribution parameters are carried out using Kolmogorov-Smirnov goodness-of-fit hypothesis tests and correlation coefficients for each directional sector.


2013 ◽  
Vol 26 (18) ◽  
pp. 7167-7186 ◽  
Author(s):  
Carl Wunsch ◽  
Patrick Heimbach

Abstract The zonally integrated meridional volume transport in the North Atlantic [Atlantic meridional overturning circulation (AMOC)] is described in a 19-yr-long ocean-state estimate, one consistent with a diverse global dataset. Apart from a weak increasing trend at high northern latitudes, the AMOC appears statistically stable over the last 19 yr with fluctuations indistinguishable from those of a stationary Gaussian stochastic process. This characterization makes it possible to study (using highly developed tools) extreme values, predictability, and the statistical significance of apparent trends. Gaussian behavior is consistent with the central limit theorem for a process arising from numerous independent disturbances. In this case, generators include internal instabilities, changes in wind and buoyancy forcing fields, boundary waves, the Gulf Stream and deep western boundary current transports, the interior fraction in Sverdrup balance, and all similar phenomena arriving as summation effects from long distances and times. As a zonal integral through the sum of the large variety of physical processes in the three-dimensional ocean circulation, understanding of the AMOC, if it is of central climate importance, requires breaking it down into its unintegrated components over the entire basin.


Sign in / Sign up

Export Citation Format

Share Document