Directional Extreme Current Profiles Based on Complex Empirical Orthogonal Functions (C-EOF) for Offshore Design

Author(s):  
Jose Antonio Moreira Lima ◽  
Eric Oliveira Ribeiro ◽  
Wellington Ceccopieri ◽  
Guisela Grossmann Matheson

This paper presents a methodology to estimate deep water design current profiles using Complex Empirical Orthogonal Function (C-EOF) and a structural reliability response based model. The advantage of C-EOF is the capability of directly obtaining directional extreme current profiles. It is estimated that most of the variability of the southeast Brazil current system can be explained by the first two EOF modes. The first mode associated with the southwestward Brazil Current (BC) and the second mode with the northeastward Intermediate Western Boundary Current (IWBC). Thus, only two series of C-EOF amplitudes can be used in the response based technique to estimate the 100-y extreme current values. The methodology can also be used with more EOF modes if required to properly represent the current data. The probabilistic cumulative functions are based on extreme value distributions such as Gumbel or Weibull, and Lognormal for conditional distributions. The evaluation of estimated distribution parameters are carried out using Kolmogorov-Smirnov goodness-of-fit hypothesis tests and correlation coefficients for each directional sector.

2009 ◽  
Vol 29 (2) ◽  
pp. 154-158 ◽  
Author(s):  
Alexandre M. Fernandes ◽  
Ilson C.A. da Silveira ◽  
Leandro Calado ◽  
Edmo J.D. Campos ◽  
Afonso M. Paiva

2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Janini Pereira ◽  
Mauro Cirano ◽  
Martinho Marta-almeida ◽  
Fabiola Negreiros Amorim

The oceanic features in the eastern and southeastern brazilian shelf/slope south of 13S is investigated using ROMS (Regional Ocean Model System). The model integration was 9 years and it was forced with: i) 6-hourly synoptic atmospheric data from NCEP; ii) initial and boundary conditions from OCCAM (Ocean Climate Circulation Advanced Modelling) monthly mean climatology and iii) tidal forcing from TPXO 7.1 global data set. The model results were compared with observations, which consisted in thermodynamic MDL (Mixed Layer Depth) climatology, satellite data, measurements from tide gauges along the shelf and currents measurements values from literature. The simulated currents represented well the BC (Brazil Current)-IWBC (IntermediateWestern Boundary Current) System. The BC - IWBC system at 22S cross-shelf section, where the mean alongshelf velocity represents our simulation capability of reproducing the western boundary currents, showed poleward BC and a opposing IWBC. At this section, the BC velocity core is in 50 m with 0.41 m.s−1 and the IWBC core around 800 m with 0.15 m.s−1.


2020 ◽  
Vol 177 (12) ◽  
pp. 5969-5992
Author(s):  
Siva Srinivas Kolukula ◽  
Balaji Baduru ◽  
P. L. N. Murty ◽  
J. Pavan Kumar ◽  
E. Pattabhi Rama Rao ◽  
...  

2019 ◽  
Vol 12 (7) ◽  
pp. 3329-3355 ◽  
Author(s):  
Franziska U. Schwarzkopf ◽  
Arne Biastoch ◽  
Claus W. Böning ◽  
Jérôme Chanut ◽  
Jonathan V. Durgadoo ◽  
...  

Abstract. The Agulhas Current, the western boundary current of the South Indian Ocean, has been shown to play an important role in the connectivity between the Indian and Atlantic oceans. The greater Agulhas Current system is highly dominated by mesoscale dynamics. To investigate their influence on the regional and global circulations, a family of high-resolution ocean general circulation model configurations based on the NEMO code has been developed. Horizontal resolution refinement is achieved by embedding “nests” covering the South Atlantic and the western Indian oceans at 1/10∘ (INALT10) and 1/20∘ (INALT20) within global hosts with coarser resolutions. Nests and hosts are connected through two-way interaction, allowing the nests not only to receive boundary conditions from their respective host but also to feed back the impact of regional dynamics onto the global ocean. A double-nested configuration at 1/60∘ resolution (INALT60) has been developed to gain insights into submesoscale processes within the Agulhas Current system. Large-scale measures such as the Drake Passage transport and the strength of the Atlantic meridional overturning circulation are rather robust among the different configurations, indicating the important role of the hosts in providing a consistent embedment of the regionally refined grids into the global circulation. The dynamics of the Agulhas Current system strongly depend on the representation of mesoscale processes. Both the southward-flowing Agulhas Current and the northward-flowing Agulhas Undercurrent increase in strength with increasing resolution towards more realistic values, which suggests the importance of improving mesoscale dynamics as well as bathymetric slopes along this narrow western boundary current regime. The exploration of numerical choices such as lateral boundary conditions and details of the implementation of surface wind stress forcing demonstrates the range of solutions within any given configuration.


2017 ◽  
Vol 44 (20) ◽  
pp. 10,530-10,539 ◽  
Author(s):  
Zhiyu Liu ◽  
Qiang Lian ◽  
Fangtao Zhang ◽  
Lei Wang ◽  
Mingming Li ◽  
...  

2012 ◽  
Vol 42 (11) ◽  
pp. 2073-2087 ◽  
Author(s):  
Renato M. Castelao

Abstract The coupling between sea surface temperature (SST), SST gradients, and wind stress curl variability near a cape off Brazil is investigated using satellite observations and several different SST high-resolution analyses. The cape is characterized by strong SST fronts year-round, associated with upwelling and advection of warm water offshore in a western boundary current. Observations reveal a strong coupling between crosswind SST gradients and wind stress curl variability, with the predominantly negative crosswind gradients leading to negative, upwelling favorable wind stress curl anomalies. The spatial correlation between empirical orthogonal functions (EOF) of those variables is ~0.6, while the correlation between the EOF amplitude time series of the wind stress curl and crosswind SST gradients is larger than 0.7. The coupling occurs during summer and winter and is strongly modulated by variations in the wind stress directional steadiness. The intensity of the coupling is weaker than around capes on the California Current system, presumably because of higher variability in wind direction off Brazil. During periods of high wind stress directional steadiness off Cape Frio, the coupling is intensified by up to 40%–75%. Wind stress curl is also correlated with SST itself, especially in the vicinity of the cape, although not as strongly as with crosswind SST gradients. The analyses suggest that the observed wind stress curl anomalies can lead to surface cooling of as much as 1°C. If the enhanced upwelling leads to further strengthening of the upwelling front, negative wind stress curl anomalies may be intensified in a positive feedback mechanism.


2020 ◽  
Vol 50 (10) ◽  
pp. 2849-2871
Author(s):  
Astrid Pacini ◽  
Robert S. Pickart ◽  
Frank Bahr ◽  
Daniel J. Torres ◽  
Andrée L. Ramsey ◽  
...  

AbstractThe structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 106 m3 s−1), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent recirculation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some of the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea.


Sign in / Sign up

Export Citation Format

Share Document