scholarly journals Long-Term Evolution of the Caspian Sea Thermohaline Properties Reconstructed in an Eddy-Resolving OGCM

2018 ◽  
Author(s):  
Gleb S. Dyakonov ◽  
Rashit A. Ibrayev

Abstract. The decadal variability of the Caspian Sea thermohaline properties is investigated by means of a high-resolution ocean general circulation model including sea ice thermodynamics and air-sea interaction, forced by prescribed realistic atmospheric conditions and riverine runoff. The model describes synoptic, seasonal and climatic variations of the sea thermohaline structure, water balance and level height. A reconstruction experiment was conducted for the period of 1961–2001, covering a major regime shift in the global climate of 1976–1978, which allows to investigate the Caspian Sea response to such significant episodes of climate change. The long-term trends in the sea circulation patterns are considered with an assessment of the influence of model error accumulation.

Ocean Science ◽  
2019 ◽  
Vol 15 (3) ◽  
pp. 527-541 ◽  
Author(s):  
Gleb S. Dyakonov ◽  
Rashit A. Ibrayev

Abstract. Decadal variability in Caspian Sea thermohaline properties is investigated using a high-resolution ocean general circulation model including sea ice thermodynamics and air–sea interaction forced by prescribed realistic atmospheric conditions and riverine runoff. The model describes synoptic, seasonal and climatic variations of sea thermohaline structure, water balance, and sea level. A reconstruction experiment was conducted for the period of 1961–2001, covering a major regime shift in the global climate during 1976–1978, which allowed for an investigation of the Caspian Sea response to such significant episodes of climate variability. The model reproduced sea level evolution reasonably well despite the fact that many factors (such as possible seabed changes and insufficiently explored underground water infiltration) were not taken into account in the numerical reconstruction. This supports the hypothesis relating rapid Caspian Sea level rise in 1978–1995 with global climate change, which caused variation in local atmospheric conditions and riverine discharge reflected in the external forcing data used, as is shown in the paper. Other effects of the climatic shift are investigated, including a decrease in salinity in the active layer, strengthening of its stratification and corresponding diminishing of convection. It is also demonstrated that water exchange between the three Caspian basins (northern, middle and southern) plays a crucial role in the formation of their thermohaline regime. The reconstructed long-term trends in seawater salinity (general downtrend after 1978), temperature (overall increase) and density (general downtrend) are studied, including an assessment of the influence of main surface circulation patterns and model error accumulation.


2011 ◽  
Vol 11 (2) ◽  
pp. 6805-6843 ◽  
Author(s):  
G. B. Hedegaard ◽  
A. Gross ◽  
J. H. Christensen ◽  
W. May ◽  
H. Skov ◽  
...  

Abstract. The ozone chemistry over three centuries has been simulated based on climate prediction from a global climate model and constant anthropogenic emissions in order to separate out the effects on air pollution from climate change. Four decades in different centuries has been simulated using the chemistry version of the atmospheric long-range transport model; the Danish Eulerian Hemispheric Model (DEHM) forced with meteorology predicted by the ECHAM5/MPI-OM coupled Atmosphere-Ocean General Circulation Model. The largest changes in both meteorology, ozone and its precursors is found in the 21st century, however, also significant changes are found in the 22nd century. At surface level the ozone concentration is predicted to increase due to climate change in the areas where substantial amounts of ozone precursors are emitted. Elsewhere a significant decrease is predicted at the surface. In the free troposphere a general increase is found in the entire Northern Hemisphere except in the tropics, where the ozone concentration is decreasing. In the Arctic the ozone concentration will increase in the entire air column, which most likely is due to changes in transport. The change in temperature, humidity and the naturally emitted Volatile Organic Compounds (VOCs) are governing with respect to changes in ozone both in the past, present and future century.


2012 ◽  
Vol 5 (3) ◽  
pp. 793-808 ◽  
Author(s):  
Y. Kamae ◽  
H. Ueda

Abstract. The mid-Pliocene (3.3 to 3.0 million yr ago), a globally warm period before the Quaternary, is recently attracting attention as a new target for paleoclimate modelling and data-model synthesis. This paper reports set-ups and results of experiments proposed in Pliocene Model Intercomparison Project (PlioMIP) using a global climate model, MRI-CGCM2.3. We conducted pre-industrial and mid-Pliocene runs by using the coupled atmosphere-ocean general circulation model (AOGCM) and its atmospheric component (AGCM) for the PlioMIP Experiments 2 and 1, respectively. In addition, we conducted two types of integrations in AOGCM simulation, with and without flux adjustments on sea surface. General characteristics of differences in the simulated mid-Pliocene climate relative to the pre-industrial in the three integrations are compared. In addition, patterns of predicted mid-Pliocene biomes resulting from the three climate simulations are compared in this study. Generally, difference of simulated surface climate between AGCM and AOGCM is larger than that between the two AOGCM runs, with and without flux adjustments. The simulated climate shows different pattern between AGCM and AOGCM particularly over low latitude oceans, subtropical land regions and high latitude oceans. The AOGCM simulations do not reproduce wetter environment in the subtropics relative to the present-day, which is suggested by terrestrial proxy data. The differences between the two types of AOGCM runs are small over the land, but evident over the ocean particularly in the North Atlantic and polar regions.


2014 ◽  
Vol 142 (1) ◽  
pp. 386-400 ◽  
Author(s):  
Nozomi Sugiura ◽  
Shuhei Masuda ◽  
Yosuke Fujii ◽  
Masafumi Kamachi ◽  
Yoichi Ishikawa ◽  
...  

Abstract Four-dimensional variational data assimilation (4D-Var) on a seasonal-to-interdecadal time scale under the existence of unstable modes can be viewed as an optimization problem of synchronized, coupled chaotic systems. The problem is tackled by adjusting initial conditions to bring all stable modes closer to observations and by using a continuous guide to direct unstable modes toward a reference time series. This interpretation provides a consistent and effective procedure for solving problems of long-term state estimation. By applying this approach to an ocean general circulation model with a parameterized vertical diffusion procedure, it is demonstrated that tangent linear and adjoint models in this framework should have no unstable modes and hence be suitable for tracking persistent signals. This methodology is widely applicable to extend the assimilation period in 4D-Var.


2011 ◽  
Vol 41 (5) ◽  
pp. 979-993 ◽  
Author(s):  
Yoshi N. Sasaki ◽  
Niklas Schneider

Abstract Meridional shifts of the Kuroshio Extension (KE) jet on decadal time scales are examined using a 1960–2004 hindcast simulation of an eddy-resolving ocean general circulation model for the Earth Simulator (OFES). The leading mode of the simulated KE represents the meridional shifts of the jet on decadal time scales with the largest southward shift in the early 1980s associated with the climate regime shift in 1976/77, a result confirmed with subsurface temperature observations. The meridional shifts originate east of the date line and propagate westward along the mean jet axis, a trajectory inconsistent with the traditionally used linear long Rossby waves linearized in Cartesian coordinates, although the phase speed is comparable to that in the traditional framework. The zonal scale of these westward propagation signals is about 4000 km and much larger than their meridional scale. To understand the mechanism for the westward propagation of the KE jet shifts, the authors consider the limit of a thin jet. This dynamic framework describes the temporal evolution of the location of a sharp potential vorticity front under the assumption that variations along the jet are small compared to variations normal to the jet in natural coordinates and is well suited to the strong jet and potential vorticity gradients of the KE. For scaling appropriate to the decadal adjustments in the KE, the thin-jet model successfully reproduces the westward propagations and decadal shifts of the jet latitude simulated in OFES. These results give a physical basis for the prediction of decadal variability in the KE.


2005 ◽  
Vol 18 (23) ◽  
pp. 5163-5178 ◽  
Author(s):  
Katja Lohmann ◽  
Mojib Latif

Abstract The decadal-scale variability in the tropical Pacific has been analyzed herein by means of observations and numerical model simulations. The two leading modes of the sea surface temperature (SST) variability in the central western Pacific are a decadal mode with a period of about 10 yr and the ENSO mode with a dominant period of about 4 yr. The SST anomaly pattern of the decadal mode is ENSO like. The decadal mode, however, explains most variance in the western equatorial Pacific and off the equator. A simulation with an ocean general circulation model (OGCM) forced by reanalysis data is used to explore the origin of the decadal mode. It is found that the variability of the shallow subtropical–tropical overturning cells is an important factor in driving the decadal mode. This is supported by results from a multicentury integration with a coupled ocean–atmosphere general circulation model (CGCM) that realistically simulates tropical Pacific decadal variability. Finally, the sensitivity of the shallow subtropical–tropical overturning cells to greenhouse warming is discussed by analyzing the results of a scenario integration with the same CGCM.


2012 ◽  
Vol 5 (1) ◽  
pp. 383-423 ◽  
Author(s):  
Y. Kamae ◽  
H. Ueda

Abstract. The mid-Pliocene (3.3 to 3.0 million yr ago), a globally warm period before the Quaternary, is recently attracting attention as a new target for paleoclimate modelling and data-model synthesis. This paper reports set-ups and results of experiments proposed in Pliocene Model Intercomparison Project (PlioMIP) using with a global climate model, MRI-CGCM2.3. We conducted pre-industrial and mid-Pliocene runs by using of the coupled atmosphere-ocean general circulation model (AOGCM) and its atmospheric component (AGCM) for the PlioMIP Experiments 2 and 1, respectively. In addition, we conducted two types of integrations in AOGCM simulation, with and without flux adjustments on sea surface. General characteristics of differences in the simulated mid-Pliocene climate relative to the pre-industrial in the three integrations are compared in this study. Generally, difference of simulated surface climate between AGCM and AOGCM is larger than that between the two AOGCM runs, with and without flux adjustments. The simulated climate shows different pattern between AGCM and AOGCM particularly over low latitude oceans, subtropical land regions, and high latitude oceans. The AOGCM simulations do not reproduce wetter environment in the subtropics relative to the present-day, which is suggested by terrestrial proxy data. The differences between the two types of AOGCM runs are little over the land but evident over the ocean particularly in the North Atlantic and polar regions.


Sign in / Sign up

Export Citation Format

Share Document