scholarly journals Vertical Structure of Ocean Surface Currents Under High Winds from Massive Arrays of Drifters

2019 ◽  
Author(s):  
John Lodise ◽  
Tamay Özgökmen ◽  
Annalisa Griffa ◽  
Maristella Berta

Abstract. Very near surface ocean currents are dominated by wind and wave forcing and have large impacts on the transport of buoyant materials in the ocean, but have proved difficult to measure with many modern instrumentations. Here, observations of ocean currents at two depths within the first meter of the surface are made utilizing trajectory data from both drogued and undrogued CARTHE drifters, which have draft depths of 60 cm and 5 cm, respectively. Trajectory data of dense, co-located drogued and undrogued drifters, were collected during the LAgrangian Submesoscale ExpeRiment (LASER) that took place from January to March of 2016 in the Northern Gulf of Mexico. Examination of the drifter velocities reveals that the surface currents become strongly wind- and wave-driven during periods of high wind, with the pre-existing regional circulation having a smaller, but non-negligible, influence on the total surface velocity. During these high wind events, we deconstruct the full surface current velocities captured by each drifter type into their wind- and wave-driven components after subtracting an estimate for the regional circulation which pre-exists each wind event. In order to capture the regional circulation in the absence of strong wind and wave forcing, a Lagrangian variational method is used to create hourly velocity fields for both drifter types separately, during the hours preceding each high wind event. Synoptic wind and wave output data from the Unified Wave INterface–Coupled Model (UWIN–CM), a fully coupled atmosphere, wave and ocean circulation model, are used for analysis. The wind-driven component of the surface current exhibits a rotation to the right with depth between the two surface layers measured. We find that the averaged wind-driven surface current from 0–5 cm (0–60 cm) travels at ~ 3.4–6.0 % (~ 2.3–4.1 %) of the wind speed, and is deflected ~ 5°–55° (~ 30–85°) to the right of the wind, reaching higher deflection angles at higher wind speeds. Results provide new insight to the vertical shear present in wind-driven surface currents under high winds, which have vital implications for any surface transport problem.

Ocean Science ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 1627-1651 ◽  
Author(s):  
John Lodise ◽  
Tamay Özgökmen ◽  
Annalisa Griffa ◽  
Maristella Berta

Abstract. Very-near-surface ocean currents are dominated by wind and wave forcing and have large impacts on the transport of buoyant materials in the ocean. Surface currents, however, are under-resolved in most operational ocean models due to the difficultly of measuring ocean currents close to, or directly at, the air–sea interface with many modern instrumentations. Here, observations of ocean currents at two depths within the first meter of the surface are made utilizing trajectory data from both drogued and undrogued Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) drifters, which have draft depths of 60 and 5 cm, respectively. Trajectory data of dense, colocated drogued and undrogued drifters were collected during the Lagrangian Submesoscale Experiment (LASER) that took place from January to March of 2016 in the northern Gulf of Mexico. Examination of the drifter data reveals that the drifter velocities become strongly wind- and wave-driven during periods of high wind, with the pre-existing regional circulation having a smaller, but non-negligible, influence on the total drifter velocities. During these high wind events, we deconstruct the total drifter velocities of each drifter type into their wind- and wave-driven components after subtracting an estimate for the regional circulation, which pre-exists each wind event. In order to capture the regional circulation in the absence of strong wind and wave forcing, a Lagrangian variational method is used to create hourly velocity field estimates for both drifter types separately, during the hours preceding each high wind event. Synoptic wind and wave output data from the Unified Wave INterface-Coupled Model (UWIN-CM), a fully coupled atmosphere, wave and ocean circulation model, are used for analysis. The wind-driven component of the drifter velocities exhibits a rotation to the right with depth between the velocities measured by undrogued and drogued drifters. We find that the average wind-driven velocity of undrogued drifters (drogued drifters) is ∼3.4 %–6.0 % (∼2.3 %–4.1 %) of the wind speed and is deflected ∼5–55∘ (∼30–85∘) to the right of the wind, reaching higher deflection angles at higher wind speeds. Results provide new insight on the vertical shear present in wind-driven surface currents under high winds, which have vital implications for any surface transport problem.


2009 ◽  
Vol 39 (6) ◽  
pp. 1512-1533 ◽  
Author(s):  
Sung Yong Kim ◽  
Bruce D. Cornuelle ◽  
Eric J. Terrill

Abstract Analysis of coastal surface currents measured off the coast of San Diego for two years suggests an anisotropic and asymmetric response to the wind, probably as a result of bottom/coastline boundary effects, including pressure gradients. In a linear regression, the statistically estimated anisotropic response explains approximately 20% more surface current variance than an isotropic wind–ocean response model. After steady wind forcing for three days, the isotropic surface current response veers 42° ± 2° to the right of the wind regardless of wind direction, whereas the anisotropic analysis suggests that the upcoast (onshore) wind stress generates surface currents with 10° ± 4° (71° ± 3°) to the right of the wind direction. The anisotropic response thus reflects the dominance of alongshore currents in this coastal region. Both analyses yield wind-driven currents with 3%–5% of the wind speed, as expected. In addition, nonlinear isotropic and anisotropic response functions are considered, and the asymmetric current responses to the wind are examined. These results provide a comprehensive statistical model of the wind-driven currents in the coastal region, which has not been well identified in previous field studies, but is qualitatively consistent with descriptions of the current response in coastal ocean models.


2020 ◽  
Vol 18 ◽  
pp. 33-41
Author(s):  
Jan Ückerseifer ◽  
Frank Gronwald

Abstract. This paper treats Characteristic Mode Analyses of three-dimensional test objects in the context of EMC. Based on computed Characteristic Modes and mode-specific physical quantities, series expansions for HIRF- and DCI-induced surface currents are deduced. The contribution of single Characteristic Modes to surface currents at different test frequencies is analyzed. HIRF- and DCI-excitations are compared with regard to their surface current distributions in their resonance region determined by Characteristic Mode Analysis.


2006 ◽  
Vol 7 (5) ◽  
pp. 984-994 ◽  
Author(s):  
Konosuke Sugiura ◽  
Tetsuo Ohata ◽  
Daqing Yang

Abstract Intercomparison of solid precipitation measurement at Barrow, Alaska, has been carried out to examine the catch characteristics of various precipitation gauges in high-latitude regions with high winds and to evaluate the applicability of the WMO precipitation correction procedures. Five manual precipitation gauges (Canadian Nipher, Hellmann, Russian Tretyakov, U.S. 8-in., and Wyoming gauges) and a double fence intercomparison reference (DFIR) as an international reference standard have been installed. The data collected in the last three winters indicates that the amount of solid precipitation is characteristically low, and the zero-catch frequency of the nonshielded gauges is considerably high, 60%–80% of precipitation occurrences. The zero catch in high-latitude high-wind regions becomes a significant fraction of the total precipitation. At low wind speeds, the catch characteristics of the gauges are roughly similar to the DFIR, although it is noteworthy that the daily catch ratios decreased more rapidly with increasing wind speed compared to the WMO correction equations. The dependency of the daily catch ratios on air temperature was confirmed, and the rapid decrease in the daily catch ratios is due to small snow particles caused by the cold climate. The daily catch ratio of the Wyoming gauge clearly shows wind-induced losses. In addition, the daily catch ratios are considerably scattered under strong wind conditions due to the influence of blowing snow. This result suggests that it is not appropriate to extrapolate the WMO correction equations for the shielded gauges in high-latitude regions for high wind speed of over 6 m s−1.


The process of calming waves by injecting air bubbles beneath the surface has been known to civil engineers for nearly 50 years. It has been little used for its results have been erratic, its method of working was unknown and its effect could not be predicted. The investigation described in this paper has shown that the surface currents set up by air injection, and the distribution of the water velocity within the currents, can be matched by currents set up by water jets, and that the two currents so matched have almost the same wave-damping effect whether they are set up by water jets or by air. It is concluded that the bubbles as such have at most a very small effect on the wave motion. It is found that waves of small amplitude are stopped in the way predicted theoretically, but that as the amplitude increases the surface current necessary to stop waves of a given length increases.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Carmelo Nasello ◽  
Vincenzo Armenio

A new small drifter prototype for measuring current immediately below the free surface in a water basin is proposed in this paper. The drifter dimensions make it useful for shallow water applications. The drifter transmits its GPS location via GSM phone network. The drifter was used to study the trajectory of the surface current in the Muggia bay, the latter containing the industrial harbor of the city of Trieste (Italy). The analysis has been carried out under a wide variety of wind conditions. As regards the behavior of the drifter, the analysis has shown that it is well suited to detect the water current since its motion is marginally affected by the wind. The study has allowed detecting the main features of the surface circulation within the Muggia bay under different meteorological conditions. Also, the study has shown that the trajectory of the surface current within the bay is weakly affected by the Coriolis force.


1979 ◽  
Vol 30 (6) ◽  
pp. 833 ◽  
Author(s):  
BV Hamon

The results of measurements of deep ocean currents over the continental slope off Sydney in May 1979 are presented and discussed. The measurements were made using neutrally buoyant floats. Four floats were used, at mean depths of 766, 1251, 1519 and 1886 m. All four floats moved towards north-north-east, approximately parallel to the depth contours, with mean speeds, over the 34-day tracking period, in the range 5-9 cm s-1. The surface current, estimated from ship's set, was towards north-east, at 25 cm s-1.


2020 ◽  
Vol 8 (11) ◽  
pp. 931
Author(s):  
Syeda Rafiq ◽  
Charitha Pattiaratchi ◽  
Ivica Janeković

The land–sea breeze (LSB) system, driven by the thermal contrast between the land and the adjacent ocean is a widely known atmospheric phenomenon, which occurs in coastal regions globally. South-west Australia experiences a persistent and one of the strongest LSB systems globally with maximum wind speeds associated with the LSB system often exceeding 15 ms−1. In this paper, using field measurements and numerical simulations, we examine: (1) the local winds associated with the land–sea breeze with an emphasis on the ocean; and, (2) the response of the surface currents to the diurnal wind forcing. The measurements indicated that the wind speeds decreased between midnight and 0400 and increased rapidly after 1100, reaching maxima >10 ms−1 around 1800) associated with the sea breeze and decreased to midnight. Wind directions were such that they were blowing from south-east (120°) in the morning and changed to almost southerly (~200°) in the afternoon. Decomposition of the wind record to the diurnal and synoptic components indicated that the diurnal component of winds (i.e., LSB) was oriented along the south-west to north-east axis. However, the stronger synoptic winds were from the south-east to south quadrant and in combination with the LSB, the winds consisted of a strong southerly component. We examined the evolution, horizontal extent, and propagation properties of sea breeze fronts for characteristic LSB cycles and the sea breeze cell propagating offshore and inland. The results indicated that the sea breeze cell was initiated in the morning in a small area, close to 33° S, 115.5° E, with a width of ~25 km and expanded onshore, offshore and alongshore. The sea breeze cell expanded faster (30 kmh−1) and farther (120 km) in the offshore direction than in the onshore direction (10 kmh−1 and 30–40 km). Winds during the LSB cycle followed a counterclockwise rotation that was also reflected in the surface currents. The winds and surface currents rotated anticlockwise with the surface currents responding almost instantaneously to changes in wind forcing but were modified by topography. The diurnal surface currents were enhanced due to the resonance between the LSB forcing and the inertial response.


2019 ◽  
Vol 49 (11) ◽  
pp. 2883-2900 ◽  
Author(s):  
Christie A. Hegermiller ◽  
John C. Warner ◽  
Maitane Olabarrieta ◽  
Christopher R. Sherwood

AbstractHurricanes interact with the Gulf Stream in the South Atlantic Bight (SAB) through a wide variety of processes, which are crucial to understand for prediction of open-ocean and coastal hazards during storms. However, it remains unclear how waves are modified by large-scale ocean currents under storm conditions, when waves are aligned with the storm-driven circulation and tightly coupled to the overlying wind field. Hurricane Matthew (2016) impacted the U.S. Southeast coast, causing extensive coastal change due to large waves and elevated water levels. The hurricane traveled on the continental shelf parallel to the SAB coastline, with the right side of the hurricane directly over the Gulf Stream. Using the Coupled Ocean–Atmosphere–Wave–Sediment Transport modeling system, we investigate wave–current interaction between Hurricane Matthew and the Gulf Stream. The model simulates ocean currents and waves over a grid encompassing the U.S. East Coast, with varied coupling of the hydrodynamic and wave components to isolate the effect of the currents on the waves, and the effect of the Gulf Stream relative to storm-driven circulation. The Gulf Stream modifies the direction of the storm-driven currents beneath the right side of the hurricane. Waves transitioned from following currents that result in wave lengthening, through negative current gradients that result in wave steepening and dissipation. Wave–current interaction over the Gulf Stream modified maximum coastal total water levels and changed incident wave directions at the coast by up to 20°, with strong implications for the morphodynamic response and stability of the coast to the hurricane.


Sign in / Sign up

Export Citation Format

Share Document