scholarly journals Spatial and temporal variability of solar penetration depths in the Bay of Bengal and its impact on SST during the summer monsoon

2021 ◽  
Author(s):  
Jack Giddings ◽  
Karen J. Heywood ◽  
Adrian J. Matthews ◽  
Manoj M. Joshi ◽  
Benjamin G. M. Webber ◽  
...  

Abstract. Chlorophyll influences regional climate through its effect on solar radiation absorption and thus sea surface temperature (SST). In the Bay of Bengal, the effect of chlorophyll on SST has been demonstrated to have a significant impact on the Indian summer (southwest) monsoon. However, little is known about the drivers and impacts of chlorophyll variability in the Bay of Bengal during the southwest monsoon. Here we use observations of downwelling irradiance measured by an ocean glider and three profiling floats to determine the spatial and temporal variability of solar absorption across the southern Bay of Bengal during the 2016 summer monsoon. A two-band exponential solar absorption scheme is fitted to vertical profiles of photosynthetically active radiation to determine the effective scale depth of blue light. Scale depths of blue light are found to vary from 12 m during the highest (0.3–0.5 mg m−3) mixed layer chlorophyll concentrations, to over 25 m when the mixed layer chlorophyll concentrations are below 0.1 mg m−3. The Southwest Monsoon Current and coastal regions of the Bay of Bengal are observed to have higher mixed layer chlorophyll concentrations and shallower solar penetration depths than other regions of the southern Bay of Bengal. Substantial sub-daily variability in solar radiadion absorption is observed, which highlights the importance of near-surface ocean processes in modulating mixed layer chlorophyll. Simulations using a one-dimensional K-profile parameterisation ocean mixed layer model with observed surface forcing from July 2016 show that a 0.3 mg m−3 increase in chlorophyll concentration increases sea surface temperature by 0.35 °C in one month with SST differences growing rapidly during calm and sunny conditions. This has the potential to influence monsoon rainfall around the Bay of Bengal and its intraseasonal variability.

Ocean Science ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 871-890
Author(s):  
Jack Giddings ◽  
Karen J. Heywood ◽  
Adrian J. Matthews ◽  
Manoj M. Joshi ◽  
Benjamin G. M. Webber ◽  
...  

Abstract. Chlorophyll has long been known to influence air–sea gas exchange and CO2 drawdown. But chlorophyll also influences regional climate through its effect on solar radiation absorption and thus sea surface temperature (SST). In the Bay of Bengal, the effect of chlorophyll on SST has been demonstrated to have a significant impact on the Indian summer (southwest) monsoon. However, little is known about the drivers and impacts of chlorophyll variability in the Bay of Bengal during the southwest monsoon. Here we use observations of downwelling irradiance measured by an ocean glider and three profiling floats to determine the spatial and temporal variability of solar absorption across the southern Bay of Bengal during the 2016 summer monsoon. A two-band exponential solar absorption scheme is fitted to vertical profiles of photosynthetically active radiation to determine the effective scale depth of blue light. Scale depths of blue light are found to vary from 12 m during the highest (0.3–0.5 mg m−3) mixed-layer chlorophyll concentrations to over 25 m when the mixed-layer chlorophyll concentrations are below 0.1 mg m−3. The Southwest Monsoon Current and coastal regions of the Bay of Bengal are observed to have higher mixed-layer chlorophyll concentrations and shallower solar penetration depths than other regions of the southern Bay of Bengal. Substantial sub-daily variability in solar radiation absorption is observed, which highlights the importance of near-surface ocean processes in modulating mixed-layer chlorophyll. Simulations using a one-dimensional K-profile parameterization ocean mixed-layer model with observed surface forcing from July 2016 show that a 0.3 mg m−3 increase in chlorophyll concentration increases sea surface temperature by 0.35 ∘C in 1 month, with SST differences growing rapidly during calm and sunny conditions. This has the potential to influence monsoon rainfall around the Bay of Bengal and its intraseasonal variability.


2018 ◽  
Vol 15 (5) ◽  
pp. 1395-1414 ◽  
Author(s):  
Saleem Shalin ◽  
Annette Samuelsen ◽  
Anton Korosov ◽  
Nandini Menon ◽  
Björn C. Backeberg ◽  
...  

Abstract. The spatial and temporal variability of marine autotrophic abundance, expressed as chlorophyll concentration, is monitored from space and used to delineate the surface signature of marine ecosystem zones with distinct optical characteristics. An objective zoning method is presented and applied to satellite-derived Chlorophyll a (Chl a) data from the northern Arabian Sea (50–75∘ E and 15–30∘ N) during the winter months (November–March). Principal component analysis (PCA) and cluster analysis (CA) were used to statistically delineate the Chl a into zones with similar surface distribution patterns and temporal variability. The PCA identifies principal components of variability and the CA splits these into zones based on similar characteristics. Based on the temporal variability of the Chl a pattern within the study area, the statistical clustering revealed six distinct ecological zones. The obtained zones are related to the Longhurst provinces to evaluate how these compared to established ecological provinces. The Chl a variability within each zone was then compared with the variability of oceanic and atmospheric properties viz. mixed-layer depth (MLD), wind speed, sea-surface temperature (SST), photosynthetically active radiation (PAR), nitrate and dust optical thickness (DOT) as an indication of atmospheric input of iron to the ocean. The analysis showed that in all zones, peak values of Chl a coincided with low SST and deep MLD. The rate of decrease in SST and the deepening of MLD are observed to trigger the algae bloom events in the first four zones. Lagged cross-correlation analysis shows that peak Chl a follows peak MLD and SST minima. The MLD time lag is shorter than the SST lag by 8 days, indicating that the cool surface conditions might have enhanced mixing, leading to increased primary production in the study area. An analysis of monthly climatological nitrate values showed increased concentrations associated with the deepening of the mixed layer. The input of iron seems to be important in both the open-ocean and coastal areas of the northern and north-western parts of the northern Arabian Sea, where the seasonal variability of the Chl a pattern closely follows the variability of iron deposition.


2020 ◽  
Author(s):  
Jack Giddings ◽  
Adrian J. Matthews ◽  
Nicholas P. Klingaman ◽  
Karen J. Heywood ◽  
Manoj Joshi ◽  
...  

Abstract. Chlorophyll absorbs solar radiation in the upper ocean, increasing mixed-layer radiative heating and sea surface temperatures (SST). The solar absorption caused by chlorophyll can be parameterised as an optical parameter, h2, the scale depth of absorption of blue light. Seasonally and spatially varying h2 in the Bay of Bengal was imposed in a coupled ocean-atmosphere model to investigate the effect of chlorophyll distributions on regional SST, atmospheric circulation and precipitation. There are both direct local upper-ocean effects, through changes in solar radiation absorption and indirect remote atmospheric responses. The depth of the mixed layer relative to the perturbed solar penetration depths modulates the response of SST to chlorophyll. The largest SST response to chlorophyll forcing occurs in coastal regions, where chlorophyll concentrations are high (> 1 mg m−3), and when climatological mixed layer depths shoal during the intermonsoon periods. Precipitation increases significantly by up to 3 mm day−1 across coastal Myanmar during the southwest monsoon onset and over northeast India and Bangladesh during the Autumn intermonsoon period, decreasing model biases.


Sign in / Sign up

Export Citation Format

Share Document