scholarly journals Sea–ice and water dynamics and moonlight impact the acoustic backscatter diurnal signal over the eastern Beaufort Sea continental slope

Author(s):  
Igor A. Dmitrenko ◽  
Vladislav Petrusevich ◽  
Gérald Darnis ◽  
Sergei A. Kirillov ◽  
Alexander S. Komarov ◽  
...  

Abstract. A two-year-long time series of currents and acoustic backscatter from an Acoustic Doppler Current Profiler, moored over the eastern Beaufort Sea continental slope from October 2003 to September 2005, were used to assess dynamics and variability of the sound-scattering layer. It has been shown that acoustic backscatter is dominated by a synchronized diel vertical migration (DVM) of the zooplankton. Our results show that DVM timings (i) were synchronous with sunlight, and (ii) were modified by moonlight and sea-ice, which attenuates light transmission to the water column. Moreover, DVM is modified or completely disrupted during highly energetic current events. Thicker ice observed during winter 2004–2005 lowered the backscatter values, but favored extending DVM toward the midnight sun. In contrast to many previous studies, DVM occurred through the intermediate water layer during the ice-free season of the midnight sun in 2004. In 2005, the midnight sun DVM was likely masked by a high acoustic scattering generated by suspended particles. During full moon at low cloud cover, the nighttime moonlight illuminance led to zooplankton avoidance of the sub-surface layer disrupting DVM. Moreover, DVM was disrupted by upwelling, downwelling and eddy passing. We suggest that these deviations are consistent with DVM adjusting to avoid enhanced water dynamics. For upwelling and downwelling, zooplankton likely respond to the along-slope water dynamics dominated by surface- and depth-intensified flow, respectively. This drives zooplankton to adjust DVM by aggregating in the low or upper intermediate water layer for upwelling and downwelling, respectively. The baroclinic eddy reversed DVM below the eddy core.

Ocean Science ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 1261-1283
Author(s):  
Igor A. Dmitrenko ◽  
Vladislav Petrusevich ◽  
Gérald Darnis ◽  
Sergei A. Kirillov ◽  
Alexander S. Komarov ◽  
...  

Abstract. A 2-year-long time series of currents and acoustic backscatter from an acoustic Doppler current profiler, moored over the eastern Beaufort Sea continental slope from October 2003 to September 2005, were used to assess the dynamics and variability of the sound-scattering layer. It has been shown that acoustic backscatter is dominated by a synchronized diel vertical migration (DVM) of zooplankton. Our results show that DVM timings (i) were synchronous with sunlight and (ii) were modified by moonlight and sea ice, which attenuates light transmission to the water column. Moreover, DVM is modified or completely disrupted during highly energetic current events. Thicker ice observed during winter–spring 2005 lowered the backscatter values but favored extending DVM toward the midnight sun. In contrast to many previous studies, DVM occurred through the intermediate water layer during the ice-free season of the midnight sun in 2004. In 2005, the midnight-sun DVM was likely impacted by a high acoustic scattering generated by suspended particles. During full moon at low cloud cover, the nighttime moonlight illuminance led to zooplankton avoidance of the subsurface layer, disrupting DVM. Moreover, DVM was disrupted by upwelling, downwelling, and eddy passing. We suggest that these deviations are consistent with DVM adjusting to avoid enhanced water dynamics. For upwelling and downwelling, zooplankton likely respond to the along-slope water dynamics dominated by surface- and depth-intensified flow, respectively. This drives zooplankton to adjust DVM by aggregating in the low or upper intermediate water layer for upwelling and downwelling, respectively. The baroclinic eddy reversed DVM below the eddy core.


ARCTIC ◽  
2018 ◽  
Vol 71 (2) ◽  
Author(s):  
Janet T. Clarke ◽  
Megan C. Ferguson ◽  
Amy L. Willoughby ◽  
Amelia A. Brower

We analyzed data from line-transect aerial surveys for marine mammals conducted in the western Beaufort Sea (shore to 72˚ N, 140˚–157˚ W) from July to October of 2009–16 to investigate the distribution, behaviors, sighting rates, and habitat use preferences of bowhead and beluga whales. The habitat use data allowed for direct comparison with data collected in the same area from 1982 to 1991. Both species are ice-adapted, migrating through leads in sea ice in spring, and are seasonal inhabitants of the western Beaufort Sea during summer and fall. From 2009 to 2016, bowheads were seen in all survey months, with the highest overall sighting rate (whales per km) in August. Bowhead sighting rates were highest in the whales’ preferred habitats: outer shelf habitat (51–200 m depth) in July and inner shelf-shallow habitat (≤ 20 m depth) in August, September, and October. Beluga whales were also seen in all survey months, with highest overall sighting rate in July. Beluga whales were overwhelmingly associated with continental slope habitat (201–2000 m depth) in all months. Bowhead distribution and depth preferences in summer months of 2009–16 differed from those observed in 1982–91, when bowheads were not seen during limited survey effort in July and preferred outer continental shelf habitat in August. These differences indicate that bowhead whale preference for shallow shelf habitat now occurs earlier in summer than it used to. Beluga distribution and depth preference remained similar between 1982–91 and 2009–16, with strong preference for continental slope during both periods. Differences in sea ice cover habitat association for both species are likely due more to the relative lack of sea ice in recent years compared to the earlier period than to shifts in habitat preference. Habitat partitioning between bowhead and beluga whales in the western Beaufort Sea remained evident except in July, when both species used continental slope habitat. In July – October 2009–16, the distribution, sighting rates, and behavior of both bowheads and belugas in the western Beaufort showed considerable interannual variation, which underscores the importance of annual sampling to accurate records of the complex western Beaufort Sea ecosystem.


1971 ◽  
Vol 10 (58) ◽  
pp. 101-104 ◽  
Author(s):  
M.P. Langleben

AbstractTwo Kipp hemispherical radiometers mounted back to back and suspended by an 18 m cable from a helicopter flying at an altitude of about 90 m were used to make measurements of incident and reflected short-wave radiation. The helicopter was brought to a hovering position at the instant of measurement to ensure that the radiometers were in the proper attitude and a photograph of the ice cover was taken at the same time. The observations were made in 1969 during 16 flights out of Tuktoyaktuk, Northwest Territories (lat. 69° 26’N., long. 133° 02’W.) over the fast ice extending 80 km north of Tuktoyaktuk. Values of albedo of the ice cover were found to decrease during the melting period according to the equation A = 0.59 —0.32P where P is the degree of puddling of the surface.


2002 ◽  
Vol 48 (161) ◽  
pp. 177-191 ◽  
Author(s):  
Jean-Louis Tison ◽  
Christian Haas ◽  
Marcia M. Gowing ◽  
Suzanne Sleewaegen ◽  
Alain Bernard

AbstractDuring an ice-tank experiment, samples were taken to study the processes of acquisition and alteration of the gas properties in young first-year sea ice during a complete growth–warming–cooling cycle. The goal was to obtain reference levels for total gas content and concentrations of atmospheric gases (O2, N2, CO2) in the absence of significant biological activity. The range of total gas-content values obtained (3.5–18 mL STP kg−1) was similar to previous measurements or estimates. However, major differences occurred between current and quiet basins, showing the role of the water dynamics at the ice–water interface in controlling bubble nucleation processes. Extremely high CO2concentrations were observed in all the experiments (up to 57% in volume parts). It is argued that these could have resulted from two unexpected biases in the experimental settings. Concentrations in bubbles nucleated at the interface are controlled by diffusion both from the ice–water interface towards the well-mixed reservoir and between the interface water and the bubble itself. This double kinetic effect results in a transition of the gas composition in the bubbles from values close to solubility in sea water toward values close to atmospheric, as the ice cover builds up.


2017 ◽  
Vol 122 (6) ◽  
pp. 1486-1505 ◽  
Author(s):  
Hanna M. Kauko ◽  
Torbjørn Taskjelle ◽  
Philipp Assmy ◽  
Alexey K. Pavlov ◽  
C. J. Mundy ◽  
...  

2021 ◽  
Author(s):  
David Gareth Babb ◽  
Ryan J. Galley ◽  
Stephen E. L. Howell ◽  
Jack Christopher Landy ◽  
Julienne Christine Stroeve ◽  
...  

2019 ◽  
Author(s):  
Yifan Ding ◽  
Xiao Cheng ◽  
Jiping Liu ◽  
Fengming Hui ◽  
Zhenzhan Wang

Abstract. The accurate knowledge of variations of melt ponds is important for understanding Arctic energy budget due to its albedo-transmittance-melt feedback. In this study, we develop and validate a new method for retrieving melt pond fraction (MPF) from the MODIS surface reflectance. We construct an ensemble-based deep neural network and use in-situ observations of MPF from multi-sources to train the network. The results show that our derived MPF is in good agreement with the observations, and relatively outperforms the MPF retrieved by University of Hamburg. Built on this, we create a new MPF data from 2000 to 2017 (the longest data in our knowledge), and analyze the spatial and temporal variability of MPF. It is found that the MPF has significant increasing trends from late July to early September, which is largely contributed by the MPF over the first-year sea ice. The analysis based on our MPF during 2000–2017 confirms that the integrated MPF to late June does promise to improve the prediction skill of seasonal Arctic sea ice minimum. However, our MPF data shows concentrated significant correlations first appear in a band, extending from the eastern Beaufort Sea, through the central Arctic, to the northern East Siberian and Laptev Seas in early-mid June, and then shifts towards large areas of the Beaufort Sea, Canadian Arctic, the northern Greenland Sea and the central Arctic basin.


Sign in / Sign up

Export Citation Format

Share Document