scholarly journals Responses of atmospheric circulation to sea surface temperature anomalies in the South China Sea

2015 ◽  
Vol 12 (4) ◽  
pp. 1693-1710
Author(s):  
M. Zhou ◽  
G. Wang

Abstract. The sea surface temperature (SST) anomalies in the South China Sea (SCS) and their influences on global atmospheric circulation were studied. The results of the simple atmospheric model suggested that the SCS SST anomalies can induce several barotropic wave trains from the SCS to other regions such as North America, high latitudes of the Southern Hemisphere and the Mediterranean. The baroclinic stream function anomalies from the simple model showed an anticyclonic vortex pair in East Asia and southern tropical Indian Ocean and a cyclonic vortex pair in the North Pacific and the Southwest Pacific. It is suggested that the spatial pattern of SST anomalies in the SCS can affect the magnitude of stream function anomalies, although it cannot affect the spatial pattern of atmospheric circulation.

Ocean Science ◽  
2015 ◽  
Vol 11 (6) ◽  
pp. 873-878 ◽  
Author(s):  
M. P. Zhou ◽  
G. H. Wang

Abstract. The sea surface temperature (SST) anomalies in the South China Sea (SCS) and their influences on global atmospheric circulation were studied. The results of a simple atmospheric model suggested that the SCS SST anomalies can induce several barotropic wave trains from the SCS to other regions such as North America, high latitudes of the Southern Hemisphere and the Mediterranean. The baroclinic stream function anomalies from the simple model showed an anticyclonic vortex pair in the Asian continent and the northern and southern Indian Ocean and a cyclonic vortex in the North Pacific and the southwestern Pacific. It is suggested that the spatial pattern of SST anomalies in the SCS can affect the magnitude of stream function anomalies, although it cannot affect the spatial pattern of atmospheric circulation.


2019 ◽  
Vol 32 (22) ◽  
pp. 7675-7695 ◽  
Author(s):  
Jie Jiang ◽  
Tianjun Zhou

Abstract Multidecadal variations in the global land monsoon were observed during the twentieth century, with an overall increasing trend from 1901 to 1955 that was followed by a decreasing trend up to 1990, but the mechanisms governing the above changes remain inconclusive. Based on the outputs of two atmospheric general circulation models (AGCMs) forced by historical sea surface temperature (SST) covering the twentieth century, supplemented with AGCM simulations forced by idealized SST anomalies representing different conditions of the North Atlantic and tropical Pacific, evidence shows that the observed changes can be partly reproduced, particularly over the Northern Hemisphere summer monsoon (NHSM) domain, demonstrating the modulation of decadal SST changes on the long-term variations in monsoon precipitation. Moisture budget analysis is performed to understand the interdecadal changes in monsoon precipitation, and the dynamic term associated with atmospheric circulation changes is found to be prominent, while the contribution of the thermodynamic term associated with humidity changes can lead to coincident wetting over the NHSM domain. The increase (decrease) in NHSM land precipitation during 1901–55 (1956–90) is associated with the strengthening (weakening) of NHSM circulation and Walker circulation. The multidecadal scale changes in atmospheric circulation are driven by SST anomalies over the North Atlantic and the Pacific. A warmer North Atlantic together with a colder eastern tropical Pacific and a warmer western subtropical Pacific can lead to a strengthened meridional gradient in mid-to-upper-tropospheric thickness and strengthened trade winds, which transport more water vapor into monsoon regions, leading to an increase in monsoon precipitation.


2017 ◽  
Vol 135 ◽  
pp. 268-280 ◽  
Author(s):  
Mong-Sin Wu ◽  
Yongqiang Zong ◽  
Ka-Man Mok ◽  
Ka-Ming Cheung ◽  
Haixian Xiong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document