scholarly journals Evaluation of the potential of InSAR time series to study the spatio-temporal evolution of piezometric levels in the Madrid aquifer

Author(s):  
M. Béjar-Pizarro ◽  
P. Ezquerro Martín ◽  
G. Herrera ◽  
R. Tomás ◽  
C. Guardiola-Albert ◽  
...  

Abstract. The Tertiary detritic aquifer of Madrid (TDAM), with an average thickness of 1500 m and a heterogeneous, anisotropic structure, supplies water to Madrid, the most populated city of Spain (3.2 million inhabitants in the metropolitan area). Besides its complex structure, a previous work focused in the north-northwest of Madrid city showed that the aquifer behaves quasi elastically trough extraction/recovery cycles and ground uplifting during recovery periods compensates most of the ground subsidence measured during previous extraction periods (Ezquerro et al., 2014). Therefore, the relationship between ground deformation and groundwater level through time can be simulated using simple elastic models. In this work, we model the temporal evolution of the piezometric level in 19 wells of the TDAM in the period 1997–2010. Using InSAR and piezometric time series spanning the studied period, we first estimate the elastic storage coefficient (Ske) for every well. Both, the Ske of each well and the average Ske of all wells, are used to predict hydraulic heads at the different well locations during the study period and compared against the measured hydraulic heads, leading to very similar errors when using the Ske of each well and the average Ske of all wells: 14 and 16 % on average respectively. This result suggests that an average Ske can be used to estimate piezometric level variations in all the points where ground deformation has been measured by InSAR, thus allowing production of piezometric level maps for the different extraction/recovery cycles in the TDAM.

2018 ◽  
Vol 10 (9) ◽  
pp. 1499 ◽  
Author(s):  
Wei Tang ◽  
Peng Yuan ◽  
Mingsheng Liao ◽  
Timo Balz

Excessive groundwater exploitation is common through the Taiyuan basin, China, and is well known to result in ground subsidence. However, most ground subsidence studies in this region focus on a single place (Taiyuan city), and thus fail to demonstrate the regional extent of the deformation phenomena in the whole basin. In this study, we used Interferometric Synthetic Aperture Radar (InSAR) time series analysis to investigate land subsidence across the entire Taiyuan basin region. Our data set includes a total of 75 ENVISAT ASAR images from two different frames acquired from August 2003 to September 2010 and 33 TerraSAR-X scenes spanning between March 2009 and March 2010. ERA-Interim reanalysis was used to correct the stratified delay to reduce the bias expected from the systematic components of tropospheric delay. The residual delay after correction of stratified delay can be considered as a stochastic component and be mitigated through spatial-temporal filtering. A comparison with MERIS (Medium-Resolution Imaging Spectrometer) measurements indicates that our atmospheric corrections improved agreement over the conventional spatial-temporal filtering by about 20%. The displacement results from our atmosphere-corrected time series InSAR were further validated with continuous GPS data. We found eight subsiding centers in the basin and a surface uplift to the north of Taiyuan city. The causes of ground deformation are analyzed and discussed in relation to gravity data, pre-existing faults, and types of land use.


2021 ◽  
Vol 13 (15) ◽  
pp. 3044
Author(s):  
Mingjie Liao ◽  
Rui Zhang ◽  
Jichao Lv ◽  
Bin Yu ◽  
Jiatai Pang ◽  
...  

In recent years, many cities in the Chinese loess plateau (especially in Shanxi province) have encountered ground subsidence problems due to the construction of underground projects and the exploitation of underground resources. With the completion of the world’s largest geotechnical project, called “mountain excavation and city construction,” in a collapsible loess area, the Yan’an city also appeared to have uneven ground subsidence. To obtain the spatial distribution characteristics and the time-series evolution trend of the subsidence, we selected Yan’an New District (YAND) as the specific study area and presented an improved time-series InSAR (TS-InSAR) method for experimental research. Based on 89 Sentinel-1A images collected between December 2017 to December 2020, we conducted comprehensive research and analysis on the spatial and temporal evolution of surface subsidence in YAND. The monitoring results showed that the YAND is relatively stable in general, with deformation rates mainly in the range of −10 to 10 mm/yr. However, three significant subsidence funnels existed in the fill area, with a maximum subsidence rate of 100 mm/yr. From 2017 to 2020, the subsidence funnels enlarged, and their subsidence rates accelerated. Further analysis proved that the main factors induced the severe ground subsidence in the study area, including the compressibility and collapsibility of loess, rapid urban construction, geological environment change, traffic circulation load, and dynamic change of groundwater. The experimental results indicated that the improved TS-InSAR method is adaptive to monitoring uneven subsidence of deep loess area. Moreover, related data and information would provide reference to the large-scale ground deformation monitoring and in similar loess areas.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Masayuki Kano ◽  
Shin’ichi Miyazaki ◽  
Yoichi Ishikawa ◽  
Kazuro Hirahara

Abstract Postseismic Global Navigation Satellite System (GNSS) time series followed by megathrust earthquakes can be interpreted as a result of afterslip on the plate interface, especially in its early phase. Afterslip is a stress release process accumulated by adjacent coseismic slip and can be considered a recovery process for future events during earthquake cycles. Spatio-temporal evolution of afterslip often triggers subsequent earthquakes through stress perturbation. Therefore, it is important to quantitatively capture the spatio-temporal evolution of afterslip and related postseismic crustal deformation and to predict their future evolution with a physics-based simulation. We developed an adjoint data assimilation method, which directly assimilates GNSS time series into a physics-based model to optimize the frictional parameters that control the slip behavior on the fault. The developed method was validated with synthetic data. Through the optimization of frictional parameters, the spatial distributions of afterslip could roughly (but not in detail) be reproduced if the observation noise was included. The optimization of frictional parameters reproduced not only the postseismic displacements used for the assimilation, but also improved the prediction skill of the following time series. Then, we applied the developed method to the observed GNSS time series for the first 15 days following the 2003 Tokachi-oki earthquake. The frictional parameters in the afterslip regions were optimized to A–B ~ O(10 kPa), A ~ O(100 kPa), and L ~ O(10 mm). A large afterslip is inferred on the shallower side of the coseismic slip area. The optimized frictional parameters quantitatively predicted the postseismic GNSS time series for the following 15 days. These characteristics can also be detected if the simulation variables can be simultaneously optimized. The developed data assimilation method, which can be directly applied to GNSS time series following megathrust earthquakes, is an effective quantitative evaluation method for assessing risks of subsequent earthquakes and for monitoring the recovery process of megathrust earthquakes.


2019 ◽  
Vol 93 (12) ◽  
pp. 2651-2660 ◽  
Author(s):  
Sergey Samsonov

AbstractThe previously presented Multidimensional Small Baseline Subset (MSBAS-2D) technique computes two-dimensional (2D), east and vertical, ground deformation time series from two or more ascending and descending Differential Interferometric Synthetic Aperture Radar (DInSAR) data sets by assuming that the contribution of the north deformation component is negligible. DInSAR data sets can be acquired with different temporal and spatial resolutions, viewing geometries and wavelengths. The MSBAS-2D technique has previously been used for mapping deformation due to mining, urban development, carbon sequestration, permafrost aggradation and pingo growth, and volcanic activities. In the case of glacier ice flow, the north deformation component is often too large to be negligible. Historically, the surface-parallel flow (SPF) constraint was used to compute the static three-dimensional (3D) velocity field at various glaciers. A novel MSBAS-3D technique has been developed for computing 3D deformation time series where the SPF constraint is utilized. This technique is used for mapping 3D deformation at the Barnes Ice Cap, Baffin Island, Nunavut, Canada, during January–March 2015, and the MSBAS-2D and MSBAS-3D solutions are compared. The MSBAS-3D technique can be used for studying glacier ice flow at other glaciers and other surface deformation processes with large north deformation component, such as landslides. The software implementation of MSBAS-3D technique can be downloaded from http://insar.ca/.


2016 ◽  
Vol 100 (1) ◽  
pp. 17-26
Author(s):  
Janusz Bogusz ◽  
Anna Klos ◽  
Marta Gruszczynska ◽  
Maciej Gruszczynski

Abstract In the modern geodesy the role of the permanent station is growing constantly. The proper treatment of the time series from such station lead to the determination of the reliable velocities. In this paper we focused on some pre-analysis as well as analysis issues, which have to be performed upon the time series of the North, East and Up components and showed the best, in our opinion, methods of determination of periodicities (by means of Singular Spectrum Analysis) and spatio-temporal correlations (Principal Component Analysis), that still exist in the time series despite modelling. Finally, the velocities of the selected European permanent stations with the associated errors determined following power-law assumption in the stochastic part is presented.


2020 ◽  
Author(s):  
Masayuki Kano ◽  
Shin'ichi Miyazaki ◽  
Yoichi Ishikawa ◽  
Kazuro Hirahara

Abstract PostseismicGlobal Navigation Satellite System (GNSS) time seriesfollowed by megathrust earthquakes can be interpreted as a result of afterslip on the plate interface especially in its early phase. Afterslip is a stress release process accumulated by adjacent coseismic slip andcan be considered a recovery process for future events during earthquake cycles. Spatio-temporal evolution of afterslip often triggers subsequent earthquakes through stress perturbation. Therefore, it is important toquantitativelycapture the spatio-temporal evolution of afterslip and related postseismic crustal deformation and to predict their future evolution with a physics-based simulation. We developedanadjoint data assimilation method, which directly assimilates GNSS time series into a physics-based model to optimize the frictional parameters that control the slip behavior on the fault.The developed method was validated with synthetic data. Through the optimization of frictional parameters, the spatial distributions of afterslip can be roughly reproduced but not in detail if the observation noise is included. The optimization of frictional parameters provides not only the reproduction ofpostseismic displacements used for the assimilation but also the improvement in the prediction skill of the following time series. Then, we appliedthe developed method to the observed GNSS time series for the first 15 d following the 2003 Tokachi-oki earthquake. The frictional parameters in the afterslip regions were optimized to A-B ~ O(10 kPa), A ~ O(100 kPa), and L ~ O(10 mm). The large afterslip is inferred on the shallower side of the coseismic slip area. The optimized frictional parameters quantitatively predicted the postseismicGNSS time series for the following 15 d. These characteristics can be also detected if the simulation variables can be simultaneously optimized. The developed data assimilation method, which can be directly applied to GNSS time series following megathrust earthquakes, isan effective quantitative evaluation method for assessing risks of subsequent earthquakes and for monitoring the recovery process of megathrust earthquakes.


Author(s):  
O. Sarychikhina ◽  
E. Glowacka

Abstract. Ground deformation in Mexicali Valley, Baja California, Mexico, the southern part of the Mexicali-Imperial valley, is influenced by active tectonics and human activity, mainly that of geothermal fluid extraction in the Cerro Prieto Geothermal Field. Significant ground deformation, mainly subsidence (~ 18 cm yr−1), and related ground fissures cause severe damage to local infrastructure. The technique of Differential Synthetic Aperture Radar Interferometry (DInSAR) has been demonstrated to be a very effective remote sensing tool for accurately measuring the spatial and temporal evolution of ground displacements over broad areas. In present study ERS-1/2 SAR and ENVISAT ASAR images acquired between 1993 and 2010 were used to perform a historical analysis of aseismic ground deformation in Mexicali Valley, in an attempt to evaluate its spatio-temporal evolution and improve the understanding of its dynamic. For this purpose, the conventional 2-pass DInSAR was used to generate interferograms which were used in stacking procedure to produce maps of annual aseismic ground deformation rates for different periods. Differential interferograms that included strong co-seismic deformation signals were not included in the stacking and analysis. The changes in the ground deformation pattern and rate were identified. The main changes occur between 2000 and 2005 and include increasing deformation rate in the recharge zone and decreasing deformation rate in the western part of the CPGF production zone. We suggested that these changes are mainly caused by production development in the Cerro Prieto Geothermal Field.


Author(s):  
F. Zhang ◽  
C. S. Yang ◽  
C. Y. Zhao ◽  
R. C. Liu

Yuncheng area is one of the most extensive distributions of ground fissures in Shanxi basin, especially in Yanhu District of Yuncheng, the disaster of ground fissures and ground subsidence are the most serious. According to previous studies, the development and distribution of the ground fissures in this area are mainly controlled by the underlying active faults. In order to provide a better understanding of the formation mechanism, the deformation of ground fissures and its surrounding environment should be taken into consideration. In this paper, PS-InSAR technology was employed to assess the time-series ground deformation of Yuncheng ground fissures and its surrounding area with X-band TerraSAR images from 2013 to 2015. The interaction between ground fissures activity and land subsidence, groundwater, precipitation and surrounding faults will be discussed.


Sign in / Sign up

Export Citation Format

Share Document