scholarly journals Modelling of hydrodynamic and solute transport with consideration of the release of low-level radioactive substances

2021 ◽  
Vol 1 ◽  
pp. 31-31
Author(s):  
Roman Winter ◽  
Bernd Flemisch ◽  
Holger Class ◽  
Rainer Merk

Abstract. When nuclear power plants are dismantled, only a small portion is heavily contaminated with radioactivity and must be stored in a repository. The remaining material, mainly concrete rubble (construction waste), is decontaminated if necessary and can be stored in conventional surface landfills after clearance. The focus of this work is on the modelling of such landfills and the radioactive substances during raining events. The influence of the heterogeneous nature of the construction rubble should also be investigated. The simulation environment DuMux, mainly developed by our institute, is used to compare different modelling approaches. It follows a previous work by Merk (2012). The research work is supported and accompanied by the Federal Office for Radiation Protection (BfS). Parts of the research initiatives of the BfS in the area of clearance of materials with negligible radioactivity are also presented.

Author(s):  
William H. Miller ◽  
David Jonassen ◽  
Rose Marra ◽  
Matthew Schmidt ◽  
Matthew Easter ◽  
...  

The U.S. Department of Labor awarded a $2.3 million grant to the University of Missouri-Columbia (MU) in 2006 in response to the need for well-trained Radiation Protection Technicians (RPTs). The RPT curriculum initiative resulted from significant collaborations facilitated by MU with community colleges, nuclear power plants, professional organizations, and other nuclear industry stakeholders. The objective of the DOL project is to help increase the pool of well-qualified RPTs to enter the nuclear workforce. Our work is designed to address the nuclear industry’s well-documented, increasingly significant need for RPTs. In response to this need, MU and AmerenUE’s Callaway Nuclear Power Plant first partnered with Linn State Technical College’s Advanced Technology Center (LSTC/ATC) to initiate a two-year RPT degree program. The success of this program (enrollments have been increasing over the past four years to a Fall 2007 enrollment of 23) enabled the successful proposal to the DOL to expand this program nationwide. DOL participants include the following partners: Linn State Technical College with AmerenUE – Callaway; Central Virginia Community College with AREVA; Estrella Mountain Community College with Arizona Public Service – Palo Verde; MiraCosta Community College with Southern California Edison – San Onofre; and Hill College with Texas Utilities – Comanche Peak. The new DOL grant has allowed redevelopment of the LSTC/ATC curriculum using a web-based, scenario driven format, benchmarked against industry training standards. This curriculum will be disseminated to all partners. Integral in this curriculum is a paid, three to four month internship at a nuclear facility. Two of the six new RPT courses have been developed as of the end of 2007. Four of five partner schools are accepting students into this new program starting in the winter 2008 term. We expect that these institutions will graduate 100 new RPTs per year to help alleviate the personnel shortage in this critical area of need.


Author(s):  
Claude Faidy

On December 2005, the French regulator issued a new regulation for French nuclear power plants, in particular for pressure equipment (PE). This regulation need first to agree with non-nuclear PE regulation and add to that some specific requirements, in particular radiation protection requirements. Different advantages are in these proposal, it’s more qualitative risk oriented and it’s an important link with non-nuclear industry. Only few components are nuclear specific. But, the general philosophy of the existing Codes (RCC-M, KTA or ASME) have to be improved. For foreign Codes, it’s plan to define the differences in the user specifications. In parallel to that, a new safety classification has been developed by French utility. The consequences is the need to cross all these specifications to define a minimum quality level for each components or systems. In the same time a new concept has been developed to replace the well known “Leak Before Break methodology” by the “Break Exclusion” methodology. This paper will summarize the key aspects of these different topics and regularly compare with ASME practices.


Atomic Energy ◽  
2008 ◽  
Vol 105 (2) ◽  
pp. 90-98
Author(s):  
A. P. Pyshko ◽  
A. Yu. Plotnikov ◽  
A. V. Son’ko

Energetika ◽  
2020 ◽  
Vol 65 (4) ◽  
Author(s):  
Zsófia Tóth ◽  
Dániel Péter Kis

The energy in nuclear power plants is produced by thermal fission. It is extremely important to be able to monitor the processes in the reactor to ensure the safety and reliability of the power plant. One of the main traits of the reactor core is neutron flux. It changes in time and space therefore it is crucial to be able to simulate its changes with computer codes. In the research work a program code was established in the Matlab software with which the neutron flux of a one-dimensional zone can be simulated with homogenous and heterogenic zone parameters as well. The code is written using the one-group one-dimensional time- and space-dependent diffusion equation. The equation of an average delayed neutron group and xenon and iodine distributions was also included in the system to give a more precise look on the problem. The main innovation in the code is that numerical methods were used to solve the problem: the finite difference approach was applied for the place-dependent and for the time-dependent solution. The advantage of this code compared to other ones is that one-dimensional zones can be simulated in a really short time and it still gives a precise solution because of the complex numerical methods used.


Author(s):  
V. V. Sorokin

Localizing safety systems are provided to contain radioactive substances in an accident and attenuate ionizing radiation at a modern nuclear power plant. Together with radioactive substances, hydrogen is also retained, which is formed during the decomposition of the primary coolant. The accumulation of hydrogen in the presence of oxygen from the atmosphere in the accident localization zone carries the danger of the formation of flammable and explosive concentrations of these components. Nuclear power plant (NPP) deigns with water-water energetic reactor (WWER) provides for a hydrogen removal system including passive catalytic hydrogen recombiners. The device capacity  is confirmed experimentally under reference conditions (lean air-hydrogen mixture, pressure and temperature close to normal, no interference with gas exchange). Capacity is an important safety parameter. In the event of an accident, conditions inside the ealed enclosure of the localizing system of NPP with WWER can  differ from the reference  ones and affect the capacity.  On the basis of calculations, the operation of recombiners with lack of  oxygen  and with hindered  gas exchange has been investigated in the paper. The decrease in capacity with lack of oxygen reaches 50 %, which is mainly  caused by an increase in underburning. Compared to the reference conditions, the effect is more pronounced in the event of an accident – 60–70 %. The hindered gas exchange is modeled by a decrease in the height of recombiner traction channel. This case can be reduced to the placement of the device in cramped conditions and the effect of the atmosphere speed inside the enclosure. Regardless of the hydrogen concentration, the operating characteristic of the device remains linear, with a two-fold decrease in height leads to a decrease in capacity by 20 %. The results can be used to substantiate the safety of NPPs with WWER and to review on the safety subtantiation of power units.


2021 ◽  
Vol 289 ◽  
pp. 01016
Author(s):  
Victor Semenov ◽  
Tatiana Shchepetina ◽  
Vladimir Polevanov ◽  
Yuri Savchenko ◽  
Sergei Popov

The article considers perspectives and institutions for innovative nuclear energy subsector – a small and medium-sized nuclear power plants (SNP). The features of the technologies, prospective sites for their introduction, topics for priority research work, as well as mechanisms for the creation of a new sub-sector of nuclear energy are briefly discussed. The advantages and opportunities of such approach to the energy supply of autonomous and isolated consumers located primarily in remote areas and in the Arctic are indicated. Special attention is paid to the problems of technological and operational safety, economic efficiency, and personnel training. The methodological framework provides a brief integrated description of the possibilities provided by dual-use technologies in solving national economic issues; a list of priority research areas to clarify assessments of the financial and economic efficiency of the SNP subsystem within the Russian nuclear energy industry; as well as proposals for personnel training to ensure a trouble-free and efficient Program implementation process.


2011 ◽  
Vol 100 (1) ◽  
pp. 35-38 ◽  
Author(s):  
Michael R. Blevins ◽  
Ralph L. Andersen

Author(s):  
Robert Arians ◽  
Simone Arnold ◽  
Christian Mueller ◽  
Claudia Quester ◽  
Dagmar Sommer

The reliability of the auxiliary power supply of a nuclear power plant (NPP) is of high importance for safe operation. The loss of the electrical power supply is one of the major contributions to the calculated core damage frequency in probabilistic safety assessments. Among others, the events in Forsmark in 2006 [1] and 2012 [2] as well as in Byron in 2012 [3] illustrate that disturbances in the external power grid can propagate into the NPP and have an impact on the safety important electrical equipment. Therefore, the grid reliability contributes considerably to the reliability of the auxiliary power supply. In the research work presented in this paper the international operating experience has been evaluated concerning events which include disturbance in the external grid to discover those types of grid disturbances which may have influence on the safe operation of the NPPs. The identified events have then been categorized within a developed classification scheme to determine those with the highest relevance. Based on this scheme representative scenarios of grid disturbances have been developed. The investigation of the impact of the developed scenarios on the electrical equipment of NPPs will be performed using a grid analysis, planning and optimization tool which also allows executing dynamic simulations of electrical grids [4]. Therefore, a generalized auxiliary power supply of a pressurized water reactor was modeled according to German NPPs of the type Konvoi. In this paper, an overview of the developed scenarios of grid disturbances and the actual status of the simulation of the auxiliary power supply of NPPs is presented.


Sign in / Sign up

Export Citation Format

Share Document