scholarly journals Experimental evidence that viscous shear zones generate periodic pore sheets that focus mass transport

2020 ◽  
Author(s):  
James Gilgannon ◽  
Marius Waldvogel ◽  
Thomas Poulet ◽  
Florian Fusseis ◽  
Alfons Berger ◽  
...  

Abstract. In experiments designed to understand deep shear zones, we show that periodic porous sheets emerge spontaneously during viscous creep, forming a hydro-mechanical anisotropy that influences mass transfer. These findings challenge the current paradigm of viscosity in solid rocks. In particular, they showcase how shear zones may actively focus mass transport and highlight the possibility that viscous rocks could locally transition from flow to fracture. Our work demonstrates that viscosity in solids is not directly comparable to viscosity in fluids and this is consequential for a range of important solid Earth topics, like slow earthquakes, the flow of glacial ice and the tectonics of exoplanets.

Solid Earth ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 405-420
Author(s):  
James Gilgannon ◽  
Marius Waldvogel ◽  
Thomas Poulet ◽  
Florian Fusseis ◽  
Alfons Berger ◽  
...  

Abstract. In experiments designed to understand deep shear zones, we show that periodic porous sheets emerge spontaneously during viscous creep and that they facilitate mass transfer. These findings challenge conventional expectations of how viscosity in solid rocks operates and provide quantitative data in favour of an alternative paradigm, that of the dynamic granular fluid pump model. On this basis, we argue that our results warrant a reappraisal of the community's perception of how viscous deformation in rocks proceeds with time and suggest that the general model for deep shear zones should be updated to include creep cavitation. Through our discussion we highlight how the integration of creep cavitation, and its Generalised Thermodynamic paradigm, would be consequential for a range of important solid Earth topics that involve viscosity in Earth materials like, for example, slow earthquakes.


2020 ◽  
Author(s):  
James Gilgannon ◽  
Marius Waldvogel ◽  
Thomas Poulet ◽  
Florian Fusseis ◽  
Alfons Berger ◽  
...  

<p>We revisit large shear strain deformation experiments on Carrara marble and observe that anisotropic porous domains develop spontaneously during shearing. Specifically, as samples are deformed periodic porous sheets are documented to emerge and are found to transfer mass. These results imply that viscous shear zones may naturally partition fluids into highly anisotropic bands. As this hydro-mechanical anisotropy is produced by creep, each porous sheet is interpreted to represent a transient dynamic pathway for fluid transport. It is unclear how long each porous domain is uniquely sustained but it is clear that sheets are persistently present with increasing strain. Our results forward the idea that viscous shear zones have dynamic transport properties that are not related to fracturing or chemical reaction. We believe these new results provide experimental foundation for changing the paradigm of viscosity in rocks to include dynamic permeability. In our view making this change in perspective could alter many classical interpretations in natural banded mylonite zones, for example shear zone parallel syn-kinematic veining may be the result of pore sheet instability and ductile fracturing.</p>


1988 ◽  
Vol 127 ◽  
Author(s):  
P. J. Bourke ◽  
D. Gilling ◽  
N. L. Jefferies ◽  
D. A. Lever ◽  
T. R. Lineham

ABSTRACTAqueous phase mass transfer through the rocks surrounding a radioactive waste repository will take place by diffusion and convection. This paper presents a comprehensive set of measurements of the mass transfer characteristics for a single, naturally occurring, clay. These data have been compared with the results predicted by mathematical models of mass transport in porous media, in order to build confidence in these models.


2000 ◽  
Vol 123 (3) ◽  
pp. 494-500 ◽  
Author(s):  
M. Groper ◽  
I. Etsion

Two possible, long standing speculated mechanisms are theoretically investigated in an attempt to understand previous experimental observations of pressure build up in the cavitation zone of a submerged journal bearing. These mechanisms are (1) the shear of the cavity gas bubble by a thin lubricant film dragged through the cavitation zone by the rotating shaft and (2) the mass transfer mechanism which dictates the rate of diffusion of dissolved gas out of and back into the lubricant. A comparison with available experimental results reveals that while the cavitation shape is fairly well predicted by the “shear” mechanism, this mechanism is incapable of generating the level of the experimentally measured pressures, particularly towards the end of the cavitation zone. The “mass transport” mechanism is found inadequate to explain the experimental observations. The effect of this mechanism on the pressure build up in the cavitation zone can be completely ignored.


Author(s):  
L y Li ◽  
J A Purkiss ◽  
R T Tenchev

In this paper an engineering model for coupled heat and mass transfer in heated concrete is proposed. The model considers the heat transfer and mass transport of liquid water and gaseous mixture. The evaporation of liquid water is assumed to be related to the imbalance pressure between liquid water and water vapour controlled by the ideal gaseous mixture pressure and water saturated pressure. Thus, the content of liquid water is determined directly from its mass transport equation rather than through assumed sorption isotherms as in most existing models. Numerical results for temperature, pore pressure and contents of liquid water and gaseous mixture are presented. Some important features are highlighted through the discussion of results.


2021 ◽  
Author(s):  
Laetitia Le Pourhiet

<p>Tectonic modelling is a very wide area of application over a large range of time scale and length scale. What mainly characterize this modelling field is the coexistence of brittle fractures which relates to the field of fracture mechanics and plastic to viscous shear zones which belongs to the two main branch of continuum mechanics (solid and fluid respectively).</p><p>This type of problems arises sometimes in engineering but material do not change their behavior with loading rate or with time or with temperature, and rarely are engineers interested in modelling large displacement in post failure stage.  As a result, tectonicists cannot use commercial packages to simulate their problems and need to develop methodologies specific to their field.</p><p>Historically, the first tectonics models made use of simple analogue materials and corresponded more to modelism than actual analogue models. While the imaging of the models, and the characterization of the analogue materials have made a lot of progress in the last 15 years, up to recently, most analogue models still relied on sand and silicone putty to represent the brittle and viscous counter part of tectonic plates.</p><p>Since the late 80’s, but mostly during the years 2000, numerical modelling has exploded on the market, as contrarily to analogue modelling, it was easier to capture the thermal dependence of frictional-viscous transition, I use frictional here because most models in tectonics use continuum mechanics approach and in fine do not include brittle material s.s. but rather frictional shear bands. Some groups run these types of simulation routinely in 3D today but this performance has been made at the cost of a major simplification in the rheology: the disappearance of elasticity and compressibility which was present in late 90’s early 2000 simulations and is still very costly because the treatment of “brittle” rheology seriously amped code performances.</p><p>Until recently, in both analogue and numerical modelling, I have some kind of feeling that we have been running the same routine experiments over and over again with better performance, or better acquisition.  </p><p>We are now entering a new exciting era in tectonic modelling both from experimental and numerical side: a ) emergence of complex analogue material or rheological laws that efforts in upscaling from micro-mechanical process observed on the field to plate boundary scale, or from earthquake cycle to plate tectonics, b) emergence of new interesting set up’s in terms of boundary conditions in 3D, c) development of robust numerical technics for brittle behavior d) development of new applications to make our field more predictive that will enlarge the community of end-users of the modelling results</p><p>I will review these novelties with some of the work develop with colleagues and students but also with examples from the literature and try to quickly draw a picture of where we are at and where we go.</p>


2021 ◽  
Author(s):  
Florian Fusseis ◽  
Craig Allsop

<p>Shear zones are important conduits that facilitate the bidirectional migration of fluids and dissolved solids across the middle crust. It is a relatively recent revelation that mylonitic deformation in such shear zones can result in the formation of synkinematic pores that are potentially utilised in long-range fluid migration. The pores definitely influence a shear zone’s hydraulic transport properties on the grain scale, facilitating synkinematic fluid-rock interactions and mass transfer. Our understanding of how exactly various forms of synkinematic porosity integrate with the kinematics and dynamics of shear zones is still growing. Here we show a previously undescribed form of synkinematic porosity in an unweathered, greenschist-facies psammitic ultramylonite from the Cap de Creus Northern Shear Belt (Spain). The sizeable, open pores with volumes > 50k µm3 appear exclusively next to albitic feldspar porphyroclasts, which themselves float in a fine-grained, polymineralic ultramylonitic matrix that likely deformed by grain size-sensitive creep and viscous grain boundary sliding. The pores wrap around their host clasts, occupying asymmetric strain shadows and tailing off into the mylonitic foliation. A detailed analysis using high-resolution backscatter electron imaging and non-invasive synchrotron-based x-ray microtomography confirms that the pores are isolated from each other. We found no evidence for weathering of the samples, or any significant post-mylonitic overprint, unequivocally supporting a synkinematic origin of the pores. </p><p>We propose that this strain shadow porosity formed through the rotations of the Ab porphyroclasts, which was governed by the clasts’ shapes and elongation. The ultramylonitic matrix was critical in enabling the formation of pores in the clast’s strain shadows. In the matrix, the individual grains were displaced mostly parallel to the shear direction. As a consequence of clast rotation it can be expected that, in the strain shadows, matrix grains followed diverging movement vectors. As a result, phase boundaries in the YZ plane experienced tensile forces, leading to the opening of pores. We infer that this tensile decoupling among matrix grains established a hydraulic gradient that drained the matrix locally and filled the pores with fluid. The fact that the strain shadow pores remained open in our samples suggests a chemical equilibrium with the fluid. Pore shape and volume will have been subject to continuous modification during ongoing matrix deformation and clast rotation.</p><p>This form of synkinematic porosity constitutes a puzzling, yet obvious way to maintain surprisingly large pores in ultramylonites whose transport properties are otherwise likely determined by creep cavitation and the granular fluid pump (Fusseis et al., 2009). We envisage that the strain shadow megapores worked in sync with the granular fluid pump in the ultramylonitic matrix and, while the overall porosity of ultramylonites may be small, locally, substantial fluid reservoirs were available to service fluid-rock interaction and fluid-mediated mass transfer. Our findings add another puzzle piece to our evolving understanding of synkinematic transport properties of mid-crustal ultramylonites and fluid-rock interaction in shear zones at the brittle-to-ductile transition.</p>


2009 ◽  
Vol 44 (2) ◽  
pp. 183-188 ◽  
Author(s):  
Asim Yaqub ◽  
Huma Ajab ◽  
Saqib Khan ◽  
Sajjad Khan ◽  
Robina Farooq

Abstract The effects of ultrasonic frequencies on both the mass transport process and diffusion layer were investigated during electrochemical treatment. The rates of mass transfer at a stainless steel cathode were measured for copper and lead in dilute acidified copper sulphate and lead nitrate solutions at different ultrasonic frequencies. Concentrations in bulk solution were determined by atomic absorption spectrophotometer. By increasing frequencies from 40 to 100 kHz, a high value for the mass transfer coefficient and an effective thinning of the diffusion layer were observed. Higher rates of mass transfer reduced energy consumption. Use of ultrasound with electrochemical processes can provide valuable contributions to remove metallic ions from industrial wastewater without using extra chemicals. The process has efficiently reduced the cost of energy consumption and deposition time.


Sign in / Sign up

Export Citation Format

Share Document