scholarly journals Supplementary material to "Vectors to ore in replacive VMS deposits of the northern Iberian Pyrite Belt: mineral zoning, whole rock geochemistry, and use of portable XRF"

Author(s):  
Guillem Gisbert ◽  
Fernando Tornos ◽  
Emma Losantos ◽  
Juan Manuel Pons ◽  
Juan Carlos Videira
2021 ◽  
Author(s):  
Guillem Gisbert ◽  
Fernando Tornos ◽  
Emma Losantos ◽  
Juan Manuel Pons ◽  
Juan Carlos Videira

Abstract. Volcanogenic Massive Sulphide (VMS) deposits represent a major source of base, precious and other metals of economic and industrial importance. As in other mineral systems, progressive exhaustion of the shallowest and most easily accessible deposits is leading to increasingly complex exploration. In this context vectors to ore play a vital role. The Iberian Pyrite Belt (IPB) is an outstanding VMS district located in the SW Iberian Peninsula, which represents the main mining area in Spain and one of the main zones of base metal production in Europe. But the work on vectors to ore in the IPB is far from systematic or complete. In this work we have performed a detailed study of the main vectors to ore related to mineral zoning and whole rock geochemistry that are currently used in the exploration of VMS systems to a representative volcanic rock hosted replacive VMS deposit located in the northern IPB, the Aguas Teñidas deposit. Results have been compared to other deposits in the IPB and in other VMS districts. The investigated vectors include: mineralogical zoning, host sequence characterization and mineralized unit identification based on whole rock geochemistry, the study of the characteristics and behaviour of whole rock geochemical anomalies around the ore (e.g. alteration-related compositional changes, characteristics and extent of geochemical halos around the deposit), with definition of threshold values for the mineralization-related indicative elements, and application of portable XRF analysis to the detection of the previous vectors. In the footwall, a concentric cone-shaped hydrothermal alteration bearing the stockwork passes laterally, from core to edge, from quartz (only locally), to chlorite, sericite–chlorite, and sericite alteration zones. The hydrothermal alteration is also found in the hanging wall despite its thrusted character: a proximal sericite alteration zone is followed by a more distal albite one, which is described here for the first time in the IPB. Whole rock major elements show an increase in alteration indexes (e.g. AI, CCPI) towards the mineralization, with a general SiO2 enrichment, FeO enrichment in the central portion of the system, K2O and Na2O leaching towards the outside areas, and a less systematic MgO behaviour. Copper, Pb and Zn produce proximal anomalies around mineralized areas, with the more mobile Sb, Tl and Ba generating wider halos. Whereas Sb and Tl halos form around all mineralized areas, Ba anomalies are restricted to areas around the massive sulphide body. Our results show that proposed vectors, or adaptations designed to overcome p-XRF limitations, can be confidently used by analysing unprepared hand specimens, including the external rough curved surface of drill cores. The data presented in this work are not only applicable to VMS exploration in the IPB, but on a broader scale they will also contribute to improve our general understating of vectors to ore in replacive-type VMS deposits.


2011 ◽  
Vol 37 (12) ◽  
pp. 1917-1927 ◽  
Author(s):  
Mónica Arias ◽  
Pablo Gumiel ◽  
Dave J. Sanderson ◽  
Agustin Martin-Izard

2021 ◽  
pp. geochem2021-015
Author(s):  
Elodie Lacroix ◽  
Jean Cauzid ◽  
Yoram Teitler ◽  
Michel Cathelineau

Since the development of portable XRF (pXRF) spectrometers, few studies have been conducted on the influence of spectral interferences between chemical elements. This study aims to improve the management of these interferences to obtain more reliable geochemical analyses. We specifically investigate Ca-related interferences on Sc analysis for the case of Ni-rich laterite samples using the Niton XL3t GOLDD+ pXRF analyser. Three quantification methods were tested on 59 pelletised samples using the ‘Soil’ mode. The first named ‘Manufacturer’, represents the elemental quantification directly provided by the device based on Regions of Interest (ROI) and multilinear corrections of spectral interferences configured during the spectrometer design. The second, the ‘20 Cu’ method, is based on spectral fitting using the PyMCA software. The third, the ‘18 Fe’ method, combines spectral fitting with modified experimental conditions. For each, a quantification methodology was developed, establishing (i) Ca and Sc calibration lines and (ii) Ca/Sc threshold values delimiting fields of ‘reliable’, 'to be confirmed,’ and ‘unreliable’ measurements. The ‘20 Cu’ and ‘18 Fe’ methods greatly extend the ‘reliable measurements’ field concerning the Ca/Sc ratio compared to the ‘Manufacturer’ method. The ‘18 Fe’ method was also found to provide the most negligible measurement dispersion.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5511838


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 826
Author(s):  
Emilio Pascual ◽  
Teodosio Donaire ◽  
Manuel Toscano ◽  
Gloria Macías ◽  
Christian Pin ◽  
...  

VMS deposits in the Iberian Pyrite Belt (IPB), Spain and Portugal, constitute the largest accumulation of these deposits on Earth. Although several factors account for their genetic interpretation, a link between volcanism and mineralization is generally accepted. In many VMS districts, research is focused on the geochemical discrimination between barren and fertile volcanic rocks, these latter being a proxy of VMS mineralization. Additionally, the volcanological study of igneous successions sheds light on the environment at which volcanic rocks were emplaced, showing an emplacement depth consistent with that required for VMS formation. We describe a case on the El Almendro–Villanueva de los Castillejos (EAVC) succession, Spanish IPB, where abundant felsic volcanic rocks occur. According to the available evidence, their geochemical features, εNd signature and U–Pb dates suggest a possible link to VMS deposits. However, (paleo)volcanological evidence here indicates pyroclastic emplacement in a shallow water environment. We infer that such a shallow environment precluded VMS generation, a conclusion that is consistent with the absence of massive deposits all along this area. We also show that this interpretation lends additional support to previous models of the whole IPB, suggesting that compartmentalization of the belt had a major role in determining the sites of VMS deposition.


Solid Earth ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1931-1966
Author(s):  
Guillem Gisbert ◽  
Fernando Tornos ◽  
Emma Losantos ◽  
Juan Manuel Pons ◽  
Juan Carlos Videira

Abstract. In this work we have performed a detailed study of vectors to ore to a representative volcanic-rock-hosted replacive volcanogenic massive sulfide (VMS) deposit located in the northern Iberian Pyrite Belt (Spain), the Aguas Teñidas deposit. The investigated vectors include the following: (1) mineralogical zoning, (2) host sequence characterization and mineralized unit identification based on whole rock geochemistry discrimination diagrams, (3) study of the characteristics and behaviour of whole rock geochemical anomalies around the ore (e.g. alteration-related compositional changes, characteristics and extent of geochemical halos of indicative elements such as Cu, Zn, Pb, Sb, Tl, and Ba around the deposit), and (4) application of portable X-ray fluorescence (p-XRF) analysis to the detection of the previous vectors. In the footwall, a concentric cone-shaped hydrothermal alteration zone bearing the stockwork passes laterally, from core to edge, from quartz (only local) to chlorite–quartz, sericite–chlorite–quartz, and sericite–quartz alteration zones. The hydrothermal alteration is also found in the hanging wall despite being tectonically allochthonous to the orebody: a proximal sericite alteration zone is followed by a more distal albite-rich one. Whole rock major elements show an increase in alteration indexes (e.g. AI, CCPI) towards the mineralization, a general SiO2 enrichment, and FeO enrichment as well as K2O and Na2O depletion towards the centre of the hydrothermal system, with MgO showing a less systematic behaviour. K2O and Na2O leached from the centre of the system are transported and deposited in more external areas. Copper, Pb, and Zn produce proximal anomalies around mineralized areas, with the more mobile Sb, Tl, and Ba generating wider halos. Whereas Sb and Tl halos form around all mineralized areas, Ba anomalies are restricted to areas around the massive sulfide body. Our results show that proposed vectors, or adaptations designed to overcome p-XRF limitations, can be confidently used by analysing unprepared hand specimens, including the external rough curved surface of drill cores. The data presented in this work are not only applicable to VMS exploration in the Iberian Pyrite Belt, but on a broader scale they will also contribute to improving our general understanding of vectors to ore in replacive-type VMS deposits.


2021 ◽  
Author(s):  
Guillem Gisbert ◽  
Fernando Tornos ◽  
Emma Losantos ◽  
Juan Manuel Pons

<p>Volcanogenic Massive Sulphide (VMS) deposits represent a major source of base, precious and other metals of economic and industrial importance. The Iberian Pyrite Belt (IPB) is an outstanding VMS district located in the SW Iberian Peninsula. It is arguably the largest known accumulation of sulphides on the Earth’s crust, and represents the main mining area in Spain and one of the main zones of base metal production in Europe. As in other mining areas, progressive exhaustion of the most shallow and easily accessible deposits is leading to increasingly complex exploration. In this context, the combined study of the mineral systems and the development of new exploration strategies and technologies based on geophysical methods and vectors to ore play a vital role.</p><p>Vectors to ore have the potential to detect the nearby presence of an ore deposit, and to provide information on its likely location or characteristics. But work on vectors to ore in IPB is far from systematic or complete. Previous works have focused on the study of the larger exhalative shale-hosted deposits of the southern IPB or the giant Rio Tinto deposit, but little attention has been paid to the predominantly volcanic rock hosted replacive deposits of the northern IPB, which, although generally smaller in size compared to southern deposits, typically present higher base metal concentrations.</p><p>In this work we have performed a detailed study of the main vectors to ore currently used in the exploration of VMS systems on a representative volcanic rock hosted replacive VMS deposit located in the northern IPB, the Aguas Teñidas deposit. These have included: mineralized unit identification based on whole rock geochemistry, study of the characteristics and behaviour of whole rock geochemical anomalies around the ore (e.g. alteration-related compositional changes, characteristics and extent of geochemical halos around the deposit), with definition of mineralization-related indicative elements threshold values, application of portable XRF analysis to the detection of the previous vectors, and characterization of major elements trends in mineral chemistry (muscovite, chlorite, carbonate) within and away from the mineralized system.</p><p>Data presented in this work are not only applicable to VMS exploration in the IPB, but on a broader scale they will also contribute to improve our general understating of vectors to ore in replacive-type VMS deposits.</p><p>The authors thank MATSA for providing information and access to drill-cores from Aguas Teñidas deposit. This research has been conducted within the NEXT (New Exploration Technologies) project and has received funding by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 776804.</p>


Author(s):  
Indah Pratiwi ◽  
Yanti Sri Rezeki

This research aims to design workbook based on the scientific approach for teaching writing descriptive text. This research was conducted on the seventh-grade students of SMPN 24 Pontianak. The method of this research is ADDIE (Analysis, Design, Development, Implementation, and Evaluation) with the exclusion of Implementation and Evaluation phases. This material was designed as supplementary material to support the course book used especially in teaching writing of descriptive text. The respondents in this research were the seventh-grade students and an English teacher at SMPN 24 Pontianak. In this research, the researchers found that workbook based on scientific approach fulfilled the criteria of the good book to teach writing descriptive text. The researchers conducted an internal evaluation to see the usability and the feasibility of the workbook. The result of the evaluation is 89%. It showed that the workbook is feasible to be used by students as the supplementary material to support the main course book and help the students improve their writing ability in descriptive text.


Sign in / Sign up

Export Citation Format

Share Document