scholarly journals Conventional tillage versus organic farming in relation to soil organic carbon stock in olive groves in Mediterranean rangelands (southern Spain)

Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 299-311 ◽  
Author(s):  
L. Parras-Alcántara ◽  
B. Lozano-García

Abstract. Soil organic carbon (SOC) concentration is a soil variable subject to changes. The management system is a key factor that influences these changes. To determine the long-term effects of the management system on SOC stocks (SOCS) in olive groves, 114 soil profiles were studied in the Los Pedroches Valley (Mediterranean rangelands – southern Spain) for 20 years. The management practices were conventional tillage (CT) and organic farming (OF) in four soil types: Cambisols (CMs), Regosols (RGs), Luvisols (LVs) and Leptosols (LPs). Soil properties were statistically analysed by management techniques, soil types and horizons. Significant differences (p < 0.05) were found between soil types and management practices. It was equally observed that the management system affected SOCS. In addition, the total SOCS during the 20-year experiment increased in OF with respect to CT by 72 and 66% in CMs and LVs respectively. SOC showed significant differences for horizons (p < 0.05) in relation to the management type. The stratification ratio (SR) was used as an indicator of soil quality based on the influence of surface SOC levels on erosion control, water infiltration and nutrient conservation with respect to deep layers. The SR of SOC from the surface to depth was greater in CT compared to OF with the exception of RGs. In all cases, the SR of SOC was >2. These results indicate high soil quality and that management practices affect SOC storage in the Los Pedroches Valley.

2014 ◽  
Vol 6 (1) ◽  
pp. 35-70 ◽  
Author(s):  
L. Parras-Alcántara ◽  
B. Lozano-García

Abstract. Soil organic carbon (SOC) concentration is a soil variable subject to changes. In agricultural soils, the management system is a key factor that influence to these changes. For determine the management system effects on SOC stocks (SOC-S) in olive groves, 114 soil profiles were studied in the Los Pedroches Valley (Mediterranean rangelands – southern Spain) for long-term (20 yr). The management practices were conventional tillage (CT) and organic farming (OF) in four soil types: Cambisols (CM), Regosols (RG), Luvisols (LV) and Leptosols (LP). Soil properties were statistically analyzed by management techniques, soil types and horizons. The principal components analyses identified four factors that explained 65% of the variance. Also, significant differences (p < 0.05) were found between soil types and management techniques. Equally was observed that the management system affected to SOC-S. In addition, the total SOC-S for 20 yr increased in OF with respect to CT by 72% and 66% in CM and LV respectively. The SOC showed significant differences for horizons (p < 0.05) in relation to the management types. The stratification ratio index of SOC was >2 in all studied soils. These results indicate high soils quality, and that management practices affect to SOC store in the Los Pedroches Valley.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 208
Author(s):  
Małgorzata Szostek ◽  
Ewa Szpunar-Krok ◽  
Renata Pawlak ◽  
Jadwiga Stanek-Tarkowska ◽  
Anna Ilek

The aim of the study was to compare the effect of conventional, simplified, and organic farming systems on changes in the content of soil organic carbon, organic matter fractions, total nitrogen, and the enzymatic activity. The research was conducted from 2016–2018 on arable land in the south-eastern part of Poland. The selected soils were cultivated in conventional tillage (C_Ts), simplified tillage (S_Ts), and organic farming (O_Fs) systems. The analyses were performed in soil from the soil surface layers (up to 25 cm depth) of the experimental plots. The highest mean contents of soil organic carbon, total nitrogen, and organic matter fractions were determined in soils subjected to the simplified tillage system throughout the experimental period. During the study period, organic carbon concentration on surface soil layers under simplified tillage systems was 31 and 127% higher than the soil under conventional tillage systems and organic farming systems, respectively. Also, the total nitrogen concentration in those soils was more than 40% and 120% higher than conventional tillage systems and organic farming systems, respectively. Moreover, these soils were characterised by a progressive decline in SOC and Nt resources over the study years. There was no significant effect of the analysed tillage systems on the C:N ratio. The tillage systems induced significant differences in the activity of the analysed soil enzymes, i.e., dehydrogenase (DH) and catalase (CAT). The highest DH activity throughout the experiment was recorded in the O_Fs soils, and the mean value of this parameter was in the range of 6.01–6.11 μmol TPF·kg−1·h−1. There were no significant differences in the CAT values between the variants of the experiment. The results confirm that, regardless of other treatments, such as the use of organic fertilisers, tillage has a negative impact on the content of SOC and organic matter fractions in the O_Fs system. All simplifications in tillage reducing the interference with the soil surface layer and the use of organic fertilisers contribute to improvement of soil properties and enhancement of biological activity, which helps to maintain its productivity and fertility.


2020 ◽  
Author(s):  
Manuel González-Rosado ◽  
Jesús Aguilera Huertas ◽  
Beatriz Lozano-García ◽  
Luis Parras-Alcántara

&lt;p&gt;Carbon sequestration in agricultural soils has been defined as a positive strategy to mitigate the climate change effects. To implement this strategy, it is necessary to reduce the soil physical disturbances that encourage its degradation. It is therefore essential to analyze the consequences that conventional tillage practices have on agrosystems as a first step towards developing sustainable management practices that are in line with strategies to combat climate change. In order to evaluate the conventional tillage impact in olive groves, a toposequence was carried out where three profiles of 50 cm depth each were opened in three topographical positions: summit, backslope and toeslope. The physical and chemical soil properties were analyzed, including soil organic carbon (SOC) and mean weight diameter (MWD) of the aggregates, which showed a plot scale low SOC levels and low MWD being subject to erosive processes which negatively impacts on its SOC storage capacity.&lt;/p&gt;


2017 ◽  
Author(s):  
◽  
Bunjirtluk Jintaridth

Soil quality is a concept that integrates physical, chemical, and biological components and processes of soil across landscapes. Identifying and developing appropriate methods to quantify and assess changes in soil quality are necessary for evaluating soil degradation and improving management practices. Many parameters that are associated with soil quality depend on soil organic matter (SOM) levels and composition. The objectives of this research were to: 1) conduct a literature review of soil quality assessment techniques to evaluate soil quality across a wide-range of environments and agricultural practices; 2) determine if some standard soil sampling and analytical protocols could be identified or developed to enhance soil quality comparisons across a wide range of environments around the world; and 3) assess the efficacy of spectroscopic-based (i.e. near-infrared, mid-infrared, and visible range) analytical methods to evaluate soil organic matter fractions and soil quality. To assess soil quality for sustainable agricultural systems in hillslope soils using spectroscopic methods, surface soil samples (0-20 cm) were collected from hillslope agricultural sites in Bolivia, the Philippines and Indonesia which had differences in length of fallow, levels of soil degradation, and cultivation by landscape position. To determine the efficacy of spectroscopic-based on visible range, the use of the potassium permanganate test (MnOxC) for active organic carbon was studied. The MnOxC test was generally responsive to a range of fallow lengths among different agricultural fields and communities in Umala Municipality in Bolivia. A major objective of fallowing agricultural fields in this region is to restore soil fertility in the field after cropping. This general increase in MnOxC with increased length fallowing may be due to inputs of residue and roots from regrowth of native vegetation after cropping in fallowed areas and possible manure inputs from sheep that generally graze these fallow areas. In addition, higher concentrations of MnOxC were generally observed in non-degraded soil compared to that of degraded soil in all sampled communities in Cochabamba, Bolivia. Comparisons of soil quality among agroforestry and nonagroforestry sites were studied near Bogor, Indonesia. Both agroforestry and nonagroforestry sites had been managed with different types and rates (low, medium, and high) of amendments including manure, compost and chemical fertilizer. Soil MnOxC was generally higher with increasing amounts of added animal manure and in agroforestry areas compared to that of non-agroforestry areas. A set of soil samples was collected along a hill-slope transect from the top to the bottom of agricultural valley on Mindanao Island in the Philippines. The transect across the landscape was divided into summit, shoulder, backslope, footslope and toeslope landscape positions. Soil MnOxC from cultivated fields areas at each landscape position were generally lower than noncultivated areas at similar landscape positions. Among the non-cultivated sites, soil MnOxC was the highest at the summit position and the lowest at the backslope positions while soil MnOxC among cultivated sites were relatively similar across the hill-slope transect. This comparison of the use of the soil MnOxC test to determine changes in active C among a wide range of environmental conditions, cropping systems and soil management practices among agroecosystems with hillslopes in tropical countries around the world indicates that the soil MnOxC test is a sensitive indicator to assess changes in active C with changes in crop and soil management. Several advantages to using this procedure include its ease of use that requires a minimal of training for the field method, its low relative cost and growing research results that facilitate interpretation of the test results. Therefore, this method has potential for supporting management decisions, and sustainable management of agricultural systems in tropical hillslope ecosystems. The ability of visible/near-infrared (VNIR) spectroscopy to estimate soil organic carbon and carbon fractions from diverse soils in tropical hillslope agroecosystems around the world that were under different soil management and cropping systems was evaluated in this research. It was shown that VNIR spectroscopy could be an effective technique to estimate SOC and soil organic carbon fractions for a wide range of soils from tropical hillslope agroecosystems around the world. Several potential advantages of use of VNIR compared to conventional soil testing methods in developing countries are that it may allow for simultaneous evaluation of several soil properties and it can be done rapidly and possibly in the field. Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFT) is considered to be one of the most sensitive infrared techniques for analyzing the structural composition of soil organic matter. The benefit of the DRIFT technique is the ability to characterize the functional group composition of heterogeneous materials with minimal sample preparation. Results showed that this method can be used to characterize the functional groups of heterogeneous soil organic materials and it may be a more direct method to determine changes in soil organic matter and soil quality caused by soil management practices than several other chemical and spectral techniques. The high resolution of the spectra and quantitative estimations of functional groups can be used to analyze soil organic carbon composition. Therefore, in future work this technique has great potential to be an accurate and simple method for helping to understand the changes in the composition of soil organic carbon due to soil organic management practices and to estimate changes in soil quality resulting from those practices in these hillslope agroecosystems.


Author(s):  
B. O. Adebo ◽  
A. O. Aweto ◽  
K. Ogedengbe

Soil quality in an agroecosytem is considerably influenced by land use and management practices. Twenty two potential soil quality indicators were used to assess the effects of five different land use types (arable land, plantation, agroforestry, marginal land and native forest) on soil quality in Akufo and Atan farm settlements in Ibadan, southwestern Nigeria. A total of sixty-two fields were selected from which soil samples were taken at a depth of 0-15 cm and subjected to laboratory analysis. Majority of the evaluated physicochemical properties varied significantly among the land uses and whereas native land performed relatively better for most of the observed attributes, arable and marginal lands performed worse. Due to the moderate to strong significant correlation among the potential indicators, they were subjected to principal component analysis and only seven indicators were selected to compute the soil quality index (SQI). In both Akufo and Atan, native land had the highest SQI (0.8250 and 0.860 respectively) which was significantly different (P = .05) from all the agricultural land uses, except plantation (0.739 and 0.750 respectively). Whereas marginal field in Atan was most degraded (SQI = 0.455), it was closely followed by arable fields in both locations. This study indicates that the current agricultural land use and soil management practices in Akufo and Atan farm settlements have negatively impacted soil quality; however, the degree of degradation was strongly influenced by the concentration of soil organic carbon in the understudied land use systems. It also emphasizes the need to promote the use of sustainable management practices among agricultural land users, so as to increase soil organic carbon stock, and improve soil quality and land productivity.


2020 ◽  
Author(s):  
Yan Zhang

&lt;p&gt;Improvements in management practices can prevent the decline of soil organic carbon (SOC) storage caused by conventional tillage&amp;#160;practice in Northeast China. Density and size fractionation can track the transformation of plant residue into SOC and its location&amp;#160;in soil matrix. We used a long-term field study&amp;#160;in China&amp;#160;to evaluate these changes as a result of improved management involving tillage and cropping systems. Experimental treatments included no-till&amp;#160;(NT)&amp;#160;and moldboard ploughing&amp;#160;(MP)&amp;#160;under monoculture maize&amp;#160;(Zea mays&amp;#160;L.) (MM) and maize-soybean (Glycine max Merr.) rotation (MS); these were compared to the traditional management involving conventional tillage&amp;#160;(CT)&amp;#160;under MM. An&amp;#160;incubation&amp;#160;study&amp;#160;was conducted to evaluate mineralization and the biodegradability of SOC. The soils were also physically fractionated by density (light fraction, LF) and size (sand, silt, clay). With improved management, the SOC storage&amp;#160;in the clay&amp;#160;showed the largest increase across&amp;#160;all fractions. This increase was greater for MS than MM. The NTMS treatment resulted in a decline in silt-OC storage compared to CTMM. The&amp;#160;SOC mineralization&amp;#160;(mg CO&lt;sub&gt;2&lt;/sub&gt;-C g&lt;sup&gt;-1&lt;/sup&gt;&amp;#160;soil)&amp;#160;was affected by tillage and driven by LF-OC&amp;#160;and was observed in the order: NTMM&amp;#160;(2.06) &gt; MPMM&amp;#160;(1.72) &amp;#8776;&amp;#160;NTMS (1.71)&amp;#160;&gt;&amp;#160;CTMM (1.52) &amp;#8776;&amp;#160;MPMS (1.41). Both cropping and depth affected the biodegradability of SOC. Considering the plough layer (0-20 cm), treatments under MM had larger proportion of biodegradable SOC than under MS.&amp;#160;We conclude that the significant differences in SOC storage in physical fractions and SOC biodegradation were caused by differences in soil management.&lt;/p&gt;


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2230
Author(s):  
Blanca Sastre ◽  
Belén Álvarez ◽  
Omar Antón ◽  
Maria Ángeles Pérez ◽  
Maria Jose Marques ◽  
...  

Olive groves on the Mediterranean Basin are usually managed by continuous tillage and low organic matter inputs, leading to several soil degradation processes. Groundcovers (GCs) have come out as an alternative soil management strategy to improve soil’s fertility, soil’s organic matter quantity, and the sustainability of agro-ecosystems. Nevertheless, farmers are still unwilling to implement GCs or reduce tilling frequency while there are still some uncertainties and lack of global analyses. The purpose of this study was to perform an assessment of the effects of using GC on the soil parameters microbiological biomass, crop yield, and olive oil quality. A field trial was performed on a gypsiferous soil in central Spain with three different GCs: permanent GC of Brachypodium distachyon (BRA); permanent GC of spontaneous vegetation (SVE), and annual GC of Vicia ervilia (BIT) to be compared with conventional tillage (TIL). After three years, numbers of nematodes, fungi, and bacteria were higher on plant roots regardless of GC composition. BRA was the treatment with the biggest impact on soil and yield parameters. BRA increased soil organic carbon 1.03 Mg ha−1 yr−1 at 0–10 cm depth but reduced significantly olive yield because of nitrogen competition. The BIT treatment improved soil organic carbon stocks and soil structure, and did not reduce olive yield significantly regarding TIL. The BIT treatment was considered the best soil management strategy in semiarid conditions.


2003 ◽  
Vol 43 (4) ◽  
pp. 325 ◽  
Author(s):  
K. Y. Chan ◽  
D. P. Heenan ◽  
H. B. So

Light-textured soils (<35% clay) make up more than 80%, by area, of cropping soils in Australia. Many have inherent soil physical problems, e.g. hardsetting, sodicity and low organic carbon levels. Maintenance and improvement of soil organic carbon levels are crucial to preserving the soil structure and physical fertility of these soils.A review of field trials on conservation tillage (3–19 years duration) on these soils in southern Australia revealed that significantly higher soil organic carbon levels compared with conventional tillage were found only in the wetter areas (>500 mm) and the differences were restricted to the top 2.5–10.0 cm. The average magnitude of the difference was lower than that reported in the USA. The lack of a positive response to conservation tillage is probably a reflection of a number of factors, namely low crop yield (due to low rainfall), partial removal of stubble by grazing and the high decomposition rate (due to the high temperature). There is evidence suggesting that under continuous cropping in the drier areas, the soil organic carbon level continues to decline, even under conservation tillage.Better soil structure and soil physical properties, namely macro-porosity, aggregate stability and higher infiltration have been reported under conservation tillage when compared with conventional tillage. However, little information on long-term changes of these properties under conservation tillage is available. As many of these soil qualities are associated directly or indirectly with soil organic carbon levels, the lack of significant increase in the latter suggests that many of these improvements may not be sustainable in the longer term, particularly in the drier areas. Continuous monitoring of long-term changes in the soil organic carbon and soil quality under conservation tillage in different agro-ecological zones is needed.


CATENA ◽  
2018 ◽  
Vol 171 ◽  
pp. 316-326 ◽  
Author(s):  
Matias E. Duval ◽  
Juan A. Galantini ◽  
Juan M. Martínez ◽  
Fabiana Limbozzi

Sign in / Sign up

Export Citation Format

Share Document