scholarly journals Crop residue decomposition in Minnesota biochar-amended plots

Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 499-507 ◽  
Author(s):  
S. L. Weyers ◽  
K. A. Spokas

Abstract. Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different plant-based feedstocks and pyrolysis platforms in the fall of 2008. Litterbags containing wheat straw material were buried in July of 2011 below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a uncharred wood-pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Overall, these findings indicate that no significant alteration in the microbial dynamics of the soil decomposer communities occurred as a consequence of the application of plant-based biochars evaluated here.

2014 ◽  
Vol 6 (1) ◽  
pp. 599-617 ◽  
Author(s):  
S. L. Weyers ◽  
K. A. Spokas

Abstract. Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different feedstocks and pyrolysis platforms prior to the start of this study. Litterbags containing wheat straw material were buried below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a non-charred wood pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Though no significant impacts were observed with field-weathered biochars, effective soil management may yet have to account for repeat applications of biochar.


2012 ◽  
Vol 36 (5) ◽  
pp. 1483-1490 ◽  
Author(s):  
Clever Briedis ◽  
João Carlos de Moraes Sá ◽  
Roberto Simão De-Carli ◽  
Erielton Aparecido Pupo Antunes ◽  
Lucas Simon ◽  
...  

In soils under no-tillage (NT), the continuous crop residue input to the surface layer leads to carbon (C) accumulation. This study evaluated a soil under NT in Ponta Grossa (State of Paraná, Brazil) for: 1) the decomposition of black oat (Avena strigosa Schreb.) residues, 2) relation of the biomass decomposition effect with the soil organic carbon (SOC) content, the particulate organic carbon (POC) content, and the soil carbon stratification ratio (SR) of an Inceptisol. The assessments were based on seven samplings (t0 to t6) in a period of 160 days of three transects with six sampling points each. The oat dry biomass was 5.02 Mg ha-1 at t0, however, after 160 days, only 17.8 % of the initial dry biomass was left on the soil surface. The SOC in the 0-5 cm layer varied from 27.56 (t0) to 30.07 g dm-3 (t6). The SR increased from 1.33 to 1.43 in 160 days. There was also an increase in the POC pool in this period, from 8.1 to 10.7 Mg ha-1. The increase in SOC in the 0-5 cm layer in the 160 days was mainly due to the increase of POC derived from oat residue decomposition. The linear relationship between SOC and POC showed that 21 % of SOC was due to the more labile fraction. The results indicated that the continuous input of residues could be intensified to increase the C pool and sequestration in soils under NT.


2019 ◽  
Vol 40 (03) ◽  
Author(s):  
Maninder Singh ◽  
Anita Jaswal ◽  
Arshdeep Singh

Crop residue management (CRM) through conservation agriculture can improve soil productivity and crop production by preserving soil organic matter (SOM) levels. Two major benefits of surface-residue management are improved organic matter (OM) near the soil surface and boosted nutrient cycling and preservation. Larger microbial biomass and activity near the soil surface act as a pool for nutrients desirable in crop production and enhance structural stability for increased infiltration. In addition to the altered nutrient distribution within the soil profile, changes also occur in the chemical and physical properties of the soil. Improved soil C sequestration through enhanced CRM is a cost-effective option for reducing agriculture's impact on the environment. Ideally, CRM practices should be selected to optimize crop yields with negligible adverse effects on the environment. Crop residues of common agricultural crops are chief resources, not only as sources of nutrients for subsequent crops but also for amended soil, water and air quality. Maintaining and managing crop residues in agriculture can be economically beneficial to many producers and more importantly to society. Improved residue management and reduced tillage practices should be encouraged because of their beneficial role in reducing soil degradation and increasing soil productivity. Thus, farmers have a responsibility in making management decisions that will enable them to optimize crop yields and minimize environmental impacts. Multi-disciplinary and integrated efforts by a wide variety of scientists are required to design the best site-specific systems for CRM practices to enhance agricultural productivity and sustainability while minimizing environmental impacts.


2021 ◽  
Vol 8 (2) ◽  
pp. 16-19
Author(s):  
Boris Alexandrovich Sotnikov ◽  
Vladimir Alexandrovich Kravchenko ◽  
Roman Viktorovich Shchuchka

Soil Science ◽  
1998 ◽  
Vol 163 (5) ◽  
pp. 412-419 ◽  
Author(s):  
H. A. Torbert ◽  
S. A. Prior ◽  
H. H. Rogers ◽  
G. B. Runion

2020 ◽  
Author(s):  
Ed Gregorich ◽  
Mike Beare ◽  
Denis Curtin ◽  
Henry Janzen ◽  
Ben Ellert ◽  
...  

<p>Crop residues are an important resource for maintaining soil productivity. The decay of crop residues is linked to many ecosystem functions, affecting atmospheric CO<sub>2</sub>, nutrient release, microbial diversity, and soil organic matter quality. The rate of decay, in turn, is regulated by soil type, management, and environmental variables, some of which will be changing in the future. Our objective in this study was to evaluate effects of soil type, climate, residue placement on the decomposition and retention of residue-derived C. <sup>13</sup>C-labelled barley straw was either placed at the surface or mixed to 10 cm in soils at four sites in Canada and one site in New Zealand representing different soil types and climates. Soils were collected periodically over 10 yr to determine <sup>13</sup>C remaining. The loss of C from crop residues occurred quickly, most (70-75%) within the first 2 yrs but with only 5-10% remaining after 10 yrs. There were large losses of C from the mixed treatments within the first year, with 20-50% lost after 6 months over winter and 50-70 % lost after one year; after that decomposition slowed. Temperature was the single most important factor regulating the rate of residue decay. Thermal time, expressed as cumulative degree days, explained more of the variability in residue C recovered than time (in calendar years). Slower decay of surface-placed residues may be attributed to lower mean annual precipitation at those sites. Thermal time is a robust, consistent way of predicting crop residue decay rates (or C storage) for comparing C kinetics across sites with different soils and climates.</p>


Sign in / Sign up

Export Citation Format

Share Document