scholarly journals Impacts of a lengthening open water season on Alaskan coastal communities: deriving locally relevant indices from large-scale datasets and community observations

2018 ◽  
Vol 12 (5) ◽  
pp. 1779-1790 ◽  
Author(s):  
Rebecca J. Rolph ◽  
Andrew R. Mahoney ◽  
John Walsh ◽  
Philip A. Loring

Abstract. Using thresholds of physical climate variables developed from community observations, together with two large-scale datasets, we have produced local indices directly relevant to the impacts of a reduced sea ice cover on Alaska coastal communities. The indices include the number of false freeze-ups defined by transient exceedances of ice concentration prior to a corresponding exceedance that persists, false break-ups, timing of freeze-up and break-up, length of the open water duration, number of days when the winds preclude hunting via boat (wind speed threshold exceedances), the number of wind events conducive to geomorphological work or damage to infrastructure from ocean waves, and the number of these wind events with on- and along-shore components promoting water setup along the coastline. We demonstrate how community observations can inform use of large-scale datasets to derive these locally relevant indices. The two primary large-scale datasets are the Historical Sea Ice Atlas for Alaska and the atmospheric output from a regional climate model used to downscale the ERA-Interim atmospheric reanalysis. We illustrate the variability and trends of these indices by application to the rural Alaska communities of Kotzebue, Shishmaref, and Utqiaġvik (previously Barrow), although the same procedure and metrics can be applied to other coastal communities. Over the 1979–2014 time period, there has been a marked increase in the number of combined false freeze-ups and false break-ups as well as the number of days too windy for hunting via boat for all three communities, especially Utqiaġvik. At Utqiaġvik, there has been an approximate tripling of the number of wind events conducive to coastline erosion from 1979 to 2014. We have also found a delay in freeze-up and earlier break-up, leading to a lengthened open water period for all of the communities examined.

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 174
Author(s):  
Günther Heinemann ◽  
Sascha Willmes ◽  
Lukas Schefczyk ◽  
Alexander Makshtas ◽  
Vasilii Kustov ◽  
...  

The parameterization of ocean/sea-ice/atmosphere interaction processes is a challenge for regional climate models (RCMs) of the Arctic, particularly for wintertime conditions, when small fractions of thin ice or open water cause strong modifications of the boundary layer. Thus, the treatment of sea ice and sub-grid flux parameterizations in RCMs is of crucial importance. However, verification data sets over sea ice for wintertime conditions are rare. In the present paper, data of the ship-based experiment Transarktika 2019 during the end of the Arctic winter for thick one-year ice conditions are presented. The data are used for the verification of the regional climate model COSMO-CLM (CCLM). In addition, Moderate Resolution Imaging Spectroradiometer (MODIS) data are used for the comparison of ice surface temperature (IST) simulations of the CCLM sea ice model. CCLM is used in a forecast mode (nested in ERA5) for the Norwegian and Barents Seas with 5 km resolution and is run with different configurations of the sea ice model and sub-grid flux parameterizations. The use of a new set of parameterizations yields improved results for the comparisons with in-situ data. Comparisons with MODIS IST allow for a verification over large areas and show also a good performance of CCLM. The comparison with twice-daily radiosonde ascents during Transarktika 2019, hourly microwave water vapor measurements of first 5 km in the atmosphere and hourly temperature profiler data show a very good representation of the temperature, humidity and wind structure of the whole troposphere for CCLM.


2019 ◽  
Author(s):  
Evelyn Jäkel ◽  
Johannes Stapf ◽  
Manfred Wendisch ◽  
Marcel Nicolaus ◽  
Wolfgang Dorn ◽  
...  

Abstract. For large scale and long term Arctic climate simulations appropriate parameterization of the surface albedo are required. Therefore, the sea ice surface (SIS) albedo parameterization of the coupled regional climate model HIRHAM–NAOSIM was examined against measurements performed during the joint ACLOUD (Arctic CLoud Observations Using airborne mea-surements during polar Day) and PASCAL (Physical feedbacks of Arctic boundary layer, Sea ice, Cloud and AerosoL) cam-paigns which were performed in May/June 2017 north of Svalbard. The SIS albedo parameterization was tested using measured quantities of the prognostic variables surface temperature and snow depth to calculate the surface albedo and the individual fractions of the ice surface subtypes (snow covered ice, bare ice, and melt ponds) derived from digital camera images taken onboard of the Polar 5/6 aircraft. Based on data gained during 12 flights, it was found that the range of parameterized SIS albedo for individual days is smaller than that of the measurements. This was attributed to the biased functional dependence of the SIS albedo parameterization on temperature. Furthermore, a temporal bias was observed with higher values compared to the modeled SIS albedo (0.88 compared to 0.84 for 29 May 2017) in the beginning of the campaign, and an opposite trend towards the end of the campaign (0.67 versus 0.83 for 25 June 2017). Furthermore, the surface type fraction parameterization was tested against the camera image product which revealed an agreement within 1 %. An adjustment of the variables, defining the parameterized SIS albedo, and additionally accounting for the cloud cover could reduce the root mean squared error from 0.14 to 0.04 for cloud free/broken cloud situations and from 0.06 to 0.05 for overcast conditions.


2017 ◽  
Author(s):  
Rebecca J. Rolph ◽  
Andrew R. Mahoney ◽  
John Walsh ◽  
Philip A. Loring

Abstract. It is often remarked that Arctic coastal communities are on the frontlines of the impacts related to the rapidly diminishing ice pack. These impacts can have direct effects on communities, such as reduced access to subsistence hunting species, or increased wave height and coastal erosion. There are also indirect effects driven by external socioeconomic systems, such as increased maritime activity, which may provide local economic benefits while increasing potential for disruption to subsistence activities. Here, we use the Historical Sea Ice Atlas (HSIA) dataset to assess the potential direct and indirect impacts from sea ice change for selected Alaska communities. The HSIA provides sea ice concentration for the Bering, Chukchi and Beaufort Seas on a 0.25-degree grid for the period 1953–2013. We estimate the timing of freeze-up and break-up, which is reported by local residents to be of critical importance for subsistence hunting activities and food security. We calculate the open water season length and extend the existing timeseries of the Barnett Severity Index (BSI), which assesses the impact of ice conditions on maritime traffic destined for the Beaufort Sea. We find consistent trends toward later freeze-up and earlier break-up, leading to a lengthened open water period. In Utqiavik (formerly Barrow), there is evidence of a navigational regime change in the 1990s when the pack ice edge started to routinely retreat beyond this most northern community.


2013 ◽  
Vol 6 (3) ◽  
pp. 849-859 ◽  
Author(s):  
P. Berg ◽  
R. Döscher ◽  
T. Koenigk

Abstract. The performance of the Rossby Centre regional climate model RCA4 is investigated for the Arctic CORDEX (COordinated Regional climate Downscaling EXperiment) region, with an emphasis on its suitability to be coupled to a regional ocean and sea ice model. Large biases in mean sea level pressure (MSLP) are identified, with pronounced too-high pressure centred over the North Pole in summer of over 5 hPa, and too-low pressure in winter of a similar magnitude. These lead to biases in the surface winds, which will potentially lead to strong sea ice biases in a future coupled system. The large-scale circulation is believed to be the major reason for the biases, and an implementation of spectral nudging is applied to remedy the problems by constraining the large-scale components of the driving fields within the interior domain. It is found that the spectral nudging generally corrects for the MSLP and wind biases, while not significantly affecting other variables, such as surface radiative components, two-metre temperature and precipitation.


2021 ◽  
Author(s):  
Günther Heinemann ◽  
Sascha Willmes ◽  
Lukas Schefczyk ◽  
Alexander Makshtas ◽  
Vasilii Kustov ◽  
...  

<p>The parameterization of ocean/sea-ice/atmosphere interaction processes is a challenge for regional climate models (RCMs) of the Arctic, particularly for wintertime conditions, when small fractions of thin ice or open water cause strong modifications of the boundary layer. Thus, the treatment of sea ice and sub-grid flux parameterizations in RCMs is of crucial importance. However, verification data sets over sea ice for wintertime conditions are rare. In the present paper, data of the ship-based experiment Transarktika 2019 during the end of the Arctic winter for thick one-year ice conditions are presented. The data are used for the verification of the regional climate model CCLM. In addition, Moderate Resolution Imaging Spectroradiometer (MODIS) data are used for the comparison of ice surface temperature (IST) simulations of the CCLM sea ice model. CCLM is used in a forecast mode (nested in ERA5) for the Norwegian and Barents Seas with 5km resolution and is run with different configurations of the sea ice model and sub-grid flux parameterizations. The use of a new set of parameterizations yields improved results for the comparisons with in-situ data. Comparisons with MODIS IST allow for a verification over large areas and show also a good performance of CCLM. The comparison with twice-daily radiosonde ascents during Transarktika 2019, hourly microwave water vapor measurements of first 5 km in the atmosphere and hourly temperature profiler data shows a very good representation of the temperature, humidity and wind structure of the whole troposphere for CCLM.</p>


2021 ◽  
Author(s):  
Younjoo J. Lee ◽  
Wieslaw Maslowski ◽  
John J. Cassano ◽  
Jaclyn Clement Kinney ◽  
Anthony P. Craig ◽  
...  

Abstract. During the 42-year period (1979–2020) of satellite measurements, only three winter polynyas have ever been observed north of Greenland and they all occurred in the last decade, i.e. February of 2011, 2017 and 2018. The 2018 polynya was unparalleled by its magnitude and duration compared to the two previous events. Combined with the limited weather station and remotely-sensed sea ice data, a fully-coupled Regional Arctic System Model (RASM) hindcast simulation was utilized to examine the causality and evolution of these recent extreme events. We found that neither the accompanying anomalous warm surface air intrusion nor the ocean below had an impact on the development of these winter open water episodes in the study region (i.e., no significant ice melting). Instead, the extreme atmospheric wind forcing resulted in greater sea ice deformation and transport offshore, accounting for the majority of sea ice loss. Our analysis suggests that strong southerly winds (i.e., northward wind with speeds of greater than 10 m/s) blowing persistently for at least 2 days or more, were required over the study region to mechanically redistribute some of the thickest sea ice out of the region and thus to create open water areas (a latent heat polynya). In order to assess the role of internal variability versus external forcing of such events, we additionally simulated and examined results from two RASM ensembles forced with output from the Community Earth System Model (CESM) Decadal Prediction Large Ensemble (DPLE) simulations. Out of 100 winters in each of the two ensembles, initialized 30 years apart, one in December 1985 and another in December 2015, respectively, 17 and 14 winter polynyas were produced over north of Greenland. The frequency of polynya occurrence and no apparent sensitivity to the initial sea ice thickness in the study area point to internal variability of atmospheric forcing as a dominant cause of winter polynyas north of Greenland. We assert that dynamical downscaling using a high-resolution regional climate model offers a robust tool for process-level examination in space and time, synthesis with limited observations and probabilistic forecast of Arctic events, such as the ones being investigated here and elsewhere.


2019 ◽  
Vol 13 (6) ◽  
pp. 1695-1708 ◽  
Author(s):  
Evelyn Jäkel ◽  
Johannes Stapf ◽  
Manfred Wendisch ◽  
Marcel Nicolaus ◽  
Wolfgang Dorn ◽  
...  

Abstract. For large-scale and long-term Arctic climate simulations appropriate parameterization of the surface albedo is required. Therefore, the sea ice surface (SIS) albedo parameterization of the coupled regional climate model HIRHAM–NAOSIM was examined against broadband surface albedo measurements performed during the joint ACLOUD (Arctic CLoud Observations Using airborne measurements during polar Day) and PASCAL (Physical feedbacks of Arctic boundary layer, Sea ice, Cloud and AerosoL) campaigns, which were performed in May–June 2017 north of Svalbard. The SIS albedo parameterization was tested using measured quantities of the prognostic variables surface temperature and snow depth to calculate the surface albedo and the individual fractions of the ice surface subtypes (snow-covered ice, bare ice, and melt ponds) derived from digital camera images taken on board the Polar 5 and 6 aircraft. The selected low-altitude (less than 100 m) flight sections of overall 12 flights were performed over surfaces dominated by snow-covered ice. It was found that the range of parameterized SIS albedo for individual days is smaller than that of the measurements. This was attributed to the biased functional dependence of the SIS albedo parameterization on temperature. Furthermore, a time-variable bias was observed with higher values compared to the modeled SIS albedo (0.88 compared to 0.84 for 29 May 2017) in the beginning of the campaign, and an opposite trend towards the end of the campaign (0.67 versus 0.83 for 25 June 2017). Furthermore, the surface type fraction parameterization was tested against the camera image product, which revealed an agreement within 1 %. An adjustment of the variables, defining the parameterized SIS albedo, and additionally accounting for the cloud cover could reduce the root-mean-squared error from 0.14 to 0.04 for cloud free/broken cloud situations and from 0.06 to 0.05 for overcast conditions.


2001 ◽  
Vol 33 ◽  
pp. 533-538 ◽  
Author(s):  
K. Görgen ◽  
J. Bareiss ◽  
A. Helbig ◽  
A. Rinke ◽  
K. Dethloff

AbstractIn this study we investigate the relationship of the atmospheric circulation and the sea-ice distribution in the Laptev Sea, Arctic Ocean, in the summers 1979−96. Sea-ice data from passive-microwave radiometers, global atmospheric data analyses, cyclone statistics and simulations of the regional climate model HIRHAM4 were analyzed to find out if periods of reduced or increased sea-ice concentrations are linked to synoptic patterns (circulation anomalies, cyclone activity). A canonical correlation analysis between Arctic sea-level pressure and sea-ice concentration anomalies confirms large-scale relationships among these variables. We did not find a simple relationship between sea-ice area anomalies and cyclone activity in the Laptev Sea area


2013 ◽  
Vol 6 (1) ◽  
pp. 495-520 ◽  
Author(s):  
P. Berg ◽  
R. Döscher ◽  
T. Koenigk

Abstract. The performance of the Rossby Centre regional climate model RCA4 is investigated for the Arctic CORDEX region, with an emphasis on its suitability to be coupled to a regional ocean and sea-ice model. Large biases in mean sea level pressure (MSLP) are identified, with pronounced too high pressure centred over the North Pole in summer of over 5 hPa, and too low pressure in winter of a similar magnitude. These lead to biases in the surface winds, which will potentially lead to strong sea-ice biases in a future coupled system. The large scale circulation is believed to be the major reason for the biases, and an implementation of spectral nudging is applied to remedy the problems by constraining the large scale components of the driving fields within the interior domain. It is found that the spectral nudging generally corrects for the MSLP and wind biases, while not significantly affecting other variables such as surface radiative components, two metre temperature and precipitation.


Sign in / Sign up

Export Citation Format

Share Document