scholarly journals Spatial probabilistic calibration of a high-resolution Amundsen Sea Embayment ice sheet model with satellite altimeter data

2020 ◽  
Vol 14 (5) ◽  
pp. 1459-1474
Author(s):  
Andreas Wernecke ◽  
Tamsin L. Edwards ◽  
Isabel J. Nias ◽  
Philip B. Holden ◽  
Neil R. Edwards

Abstract. Probabilistic predictions of the sea level contribution from Antarctica often have large uncertainty intervals. Calibration of model simulations with observations can reduce uncertainties and improve confidence in projections, particularly if this exploits as much of the available information as possible (such as spatial characteristics), but the necessary statistical treatment is often challenging and can be computationally prohibitive. Ice sheet models with sufficient spatial resolution to resolve grounding line evolution are also computationally expensive. Here we address these challenges by adopting and comparing dimension-reduced calibration approaches based on a principal component decomposition of the adaptive mesh model BISICLES. The effects model parameters have on these principal components are then gathered in statistical emulators to allow for smooth probability density estimates. With the help of a published perturbed parameter ice sheet model ensemble of the Amundsen Sea Embayment (ASE), we show how the use of principal components in combination with spatially resolved observations can improve probabilistic calibrations. In synthetic model experiments (calibrating the model with altered model results) we can identify the correct basal traction and ice viscosity scaling parameters as well as the bedrock map with spatial calibrations. In comparison a simpler calibration against an aggregated observation, the net sea level contribution, imposes only weaker constraints by allowing a wide range of basal traction and viscosity scaling factors. Uncertainties in sea level rise contribution of 50-year simulations from the current state of the ASE can be reduced with satellite observations of recent ice thickness change by nearly 90 %; median and 90 % confidence intervals are 18.9 [13.9, 24.8] mm SLE (sea level equivalent) for the proposed spatial calibration approach, 16.8 [7.7, 25.6] mm SLE for the net sea level calibration and 23.1 [−8.4, 94.5] mm SLE for the uncalibrated ensemble. The spatial model behaviour is much more consistent with observations if, instead of Bedmap2, a modified bedrock topography is used that most notably removes a topographic rise near the initial grounding line of Pine Island Glacier. The ASE dominates the current Antarctic sea level contribution, but other regions have the potential to become more important on centennial scales. These larger spatial and temporal scales would benefit even more from methods of fast but exhaustive model calibration. Applied to projections of the whole Antarctic ice sheet, our approach has therefore the potential to efficiently improve our understanding of model behaviour, as well as substantiating and reducing projection uncertainties.

2019 ◽  
Author(s):  
Andreas Wernecke ◽  
Tamsin L. Edwards ◽  
Isabel J. Nias ◽  
Philip B. Holden ◽  
Neil R. Edwards

Abstract. Probabilistic predictions of the sea level contribution from Antarctica often have large uncertainty intervals. Calibration with observations can reduce uncertainties and improve confidence in projections, particularly if this exploits as much of the available information as possible (such as spatial characteristics), but the necessary statistical treatment is often challenging and can be computationally prohibitive. Ice sheet models with sufficient spatial resolution to resolve grounding line evolution are also computationally expensive. Here we address these challenges by adopting a novel dimension-reduced approach to calibration combined with statistical emulation of the adaptive mesh model BISICLES. We find the most likely contribution to global mean sea level rise from the Amundsen Sea Embayment (ASE) over the next 50 years is 10.4 [0.6, 23.3] mm (mode and 5–95 % probability interval), a substantial reduction in uncertainty from the uncalibrated estimates of 9.6 [−5.9, 78.2] mm. We predict retreat of the grounding line along most parts of the ASE coast with high confidence, with a maximum inland extent of around 28 km at Smith Glacier. The model behaviour is much more consistent with observations if, instead of Bedmap2, a modified bedrock topography is used that most notably removes a topographic rise near the initial grounding line of Pine Island Glacier, though this does influence the future mass loss less than basal traction and viscosity scaling parameters. The ASE dominates the current Antarctic sea level contribution, but other regions have the potential to become more important on centennial scales. These larger spatial and temporal scales would benefit even more from methods of fast but exhaustive model calibration. Our approach therefore has the potential to improve projections for the Antarctic ice sheet on continental and centennial scales by efficiently improving our understanding of model behaviour, and substantiating and reducing projection uncertainties.


2021 ◽  
Author(s):  
◽  
Daniel P. Lowry

<p>Reconstructing past grounding-line evolution can help inform future sea level projections by constraining marine ice sheet sensitivities to changes in climate. The Ross Embayment, the largest sector of Antarctica, experienced substantial grounding-line retreat since the Last Glacial Maximum. However, different interpretations for the timing and spatial pattern of deglacial grounding-line retreat in this region persist, suggesting either very high or low sensitivity to external forcings. Complicating matters is the sparse paleoclimate record, which is limited spatially and temporally. In this thesis, I address these issues by analysing the output of two transient climate simulations in relation to Antarctic ice core and marine sediment records, and performing and analysing the largest ensemble to date of regional ice sheet model simulations of the last deglaciation in the Ross Sea. The climate models and paleoclimate proxy records exhibit key differences in the timing, magnitude and duration of millennial-scale climate change events through the deglacial period. Using this diverse set of deglacial climate trajectories as ocean and atmosphere forcings, the ice sheet model ensemble produces a wide range of ice sheet responses, supporting the view that external forcings are the main drivers of past grounding-line retreat in the region. The simulations demonstrate that atmospheric conditions early in the deglacial period can enhance or diminish ice sheet sensitivity to rising ocean temperatures, thereby controlling the initial timing and spatial pattern of grounding-line retreat. Through the Holocene, grounding-line position is more sensitive to sub-shelf melt rates as the ocean cavity below the ice shelf expands. Model parameters that control the physical properties of the bed, deformation of the continental shelf, and rheological properties of the ice strongly influence the sensitivity of ice sheets to external forcing. Basin-wide differences in these forcings, driven by oceanic and atmospheric circulation, and spatial heterogeneity of bed properties likely contribute to the asynchronous pattern of retreat in the eastern and western parts of the embayment, as indicated by marine and terrestrial proxy records.</p>


2021 ◽  
Author(s):  
◽  
Daniel P. Lowry

<p>Reconstructing past grounding-line evolution can help inform future sea level projections by constraining marine ice sheet sensitivities to changes in climate. The Ross Embayment, the largest sector of Antarctica, experienced substantial grounding-line retreat since the Last Glacial Maximum. However, different interpretations for the timing and spatial pattern of deglacial grounding-line retreat in this region persist, suggesting either very high or low sensitivity to external forcings. Complicating matters is the sparse paleoclimate record, which is limited spatially and temporally. In this thesis, I address these issues by analysing the output of two transient climate simulations in relation to Antarctic ice core and marine sediment records, and performing and analysing the largest ensemble to date of regional ice sheet model simulations of the last deglaciation in the Ross Sea. The climate models and paleoclimate proxy records exhibit key differences in the timing, magnitude and duration of millennial-scale climate change events through the deglacial period. Using this diverse set of deglacial climate trajectories as ocean and atmosphere forcings, the ice sheet model ensemble produces a wide range of ice sheet responses, supporting the view that external forcings are the main drivers of past grounding-line retreat in the region. The simulations demonstrate that atmospheric conditions early in the deglacial period can enhance or diminish ice sheet sensitivity to rising ocean temperatures, thereby controlling the initial timing and spatial pattern of grounding-line retreat. Through the Holocene, grounding-line position is more sensitive to sub-shelf melt rates as the ocean cavity below the ice shelf expands. Model parameters that control the physical properties of the bed, deformation of the continental shelf, and rheological properties of the ice strongly influence the sensitivity of ice sheets to external forcing. Basin-wide differences in these forcings, driven by oceanic and atmospheric circulation, and spatial heterogeneity of bed properties likely contribute to the asynchronous pattern of retreat in the eastern and western parts of the embayment, as indicated by marine and terrestrial proxy records.</p>


2015 ◽  
Vol 9 (2) ◽  
pp. 1705-1733 ◽  
Author(s):  
M. A. Martin ◽  
A. Levermann ◽  
R. Winkelmann

Abstract. Future changes in Antarctic ice discharge will be largely controlled by the fate of the floating ice shelves, which exert a back-stress onto Antarctica's marine outlet glaciers. Ice loss in response to warming of the Amundsen Sea has been observed and investigated as a potential trigger for the marine ice-sheet instability. Recent observations and simulations suggest that the Amundsen Sea Sector might already be unstable which would have strong implications for global sea-level rise. At the same time, regional ocean projections show much stronger warm-water intrusion into ice-shelf cavities in the Weddell Sea compared to the observed Amundsen warming. Here we present results of numerical ice sheet modelling with the Parallel Ice Sheet Model (PISM) which show that idealized, step-function type ocean warming in the Weddell Sea leads to more immediate ice discharge with a higher sensitivity to small warming levels than the same warming in the Amundsen Sea. This is consistent with the specific combination of bedrock and ice topography in the Weddell Sea Sector which results in an ice sheet close to floatation. In response to even slight ocean warming, ice loss increases rapidly, peaks and declines within one century. While the cumulative ice loss in the Amundsen Sea Sector is of similar magnitude after five centuries of continued warming, ice loss increases at a slower pace and only for significantly higher warming levels. Although there is more marine ice stored above sea level in close vicinity of the grounding line compared to the Weddell Sea Sector, the ice sheet is farther from floatation and the grounding line initially retreats more slowly.


2020 ◽  
Vol 14 (4) ◽  
pp. 1245-1258
Author(s):  
Alanna V. Alevropoulos-Borrill ◽  
Isabel J. Nias ◽  
Antony J. Payne ◽  
Nicholas R. Golledge ◽  
Rory J. Bingham

Abstract. The response of ice streams in the Amundsen Sea Embayment (ASE) to future climate forcing is highly uncertain. Here we present projections of 21st century response of ASE ice streams to modelled local ocean temperature change using a subset of Coupled Model Intercomparison Project (CMIP5) simulations. We use the BISICLES adaptive mesh refinement (AMR) ice sheet model, with high-resolution grounding line resolving capabilities, to explore grounding line migration in response to projected sub-ice-shelf basal melting. We find a contribution to sea level rise of between 2.0 and 4.5 cm by 2100 under RCP8.5 conditions from the CMIP5 subset, where the mass loss response is linearly related to the mean ocean temperature anomaly. To account for uncertainty associated with model initialization, we perform three further sets of CMIP5-forced experiments using different parameterizations that explore perturbations to the prescription of initial basal melt, the basal traction coefficient and the ice stiffening factor. We find that the response of the ASE to ocean temperature forcing is highly dependent on the parameter fields obtained in the initialization procedure, where the sensitivity of the ASE ice streams to the sub-ice-shelf melt forcing is dependent on the choice of parameter set. Accounting for ice sheet model parameter uncertainty results in a projected range in sea level equivalent contribution from the ASE of between −0.02 and 12.1 cm by the end of the 21st century.


2014 ◽  
Vol 60 (220) ◽  
pp. 305-313 ◽  
Author(s):  
David Docquier ◽  
David Pollard ◽  
Frank Pattyn

AbstractMajor ice loss has recently been observed along coastal outlet glaciers of the West Antarctic ice sheet, mainly due to increased melting below the ice shelves. However, the behavior of this marine ice sheet is poorly understood, leading to significant shortcomings in ice-sheet models attempting to predict future sea-level rise. The stability of a marine ice sheet is controlled by the dynamics at the grounding line, the boundary between the grounded ice stream and the floating ice shelf. One of the largest contributors to current sea-level rise is the fast-flowing Thwaites Glacier, which flows into the Amundsen Sea. Here we use an ice-stream/ice-shelf model and perform a number of experiments along a central flowline to analyze the sensitivity of its grounding line on centennial timescales. In the absence of width and buttressing effects, we find that the grounding line retreats by ˜300 km in 200 years from the present day (rate of 1.5 km a–1). With variable glacier width implemented in the model, flow convergence slows the retreat of Thwaites grounding line at 0.3–1.2 km a–1. The parameterization of ice-shelf buttressing according to different observed scenarios further reduces the glacier retreat and can even lead to a slight advance in the most buttressed case.


2021 ◽  
Author(s):  
Olga Sergienko ◽  
Duncan Wingham

&lt;p&gt;The &quot;marine ice-sheet instability hypothesis&quot;, which states that unconfined marine ice sheets are unconditionally unstable on retrograde slopes, was developed under assumptions of negligible bed slopes. Realistic ice sheets, however, flow over beds which topographies have a wide range of bed slopes (for example, Thwaites Glacier in the Amundsen Sea sector, West Antarctica). Reexamining the original model of marine ice sheets proposed by Schoof (2007), and relaxing an assumption of negligible bed slopes, we find that a steady-state ice flux at the grounding line is an implicit function of the grounding-line ice thickness, bed slope and accumulation rate. Depending on the sliding conditions, the magnitudes of the ice flux at the grounding line differ by one-to-three orders of magnitudes from that computed with a power-law expression derived by Schoof (2007) under assumptions of the negligible bed slopes. Non-negligible bed slopes also result in conditions of stability of the grounding line that are significantly more complex than those associated with the &quot;marine ice sheet instability hypothesis&quot;. Bed slopes are no longer the sole determinant of whether the grounding line is stable or unstable. We find that the grounding line can be stable on beds with retrograde slopes and unstable on beds with prograde slopes.&amp;#160;&lt;/p&gt;


2019 ◽  
Author(s):  
Alanna V. Alevropoulos-Borrill ◽  
Isabel J. Nias ◽  
Antony J. Payne ◽  
Nicholas R. Golledge ◽  
Rory J. Bingham

Abstract. The response of ice streams in the Amundsen Sea Embayment (ASE) to future climate forcing is highly uncertain. Here we present projections of 21st century response of ASE ice streams to modelled local ocean temperature change using a subset of Coupled Model Intercomparison Project (CMIP5) simulations. We use the BISICLES adaptive mesh refinement (AMR) ice sheet model, with high resolution grounding line resolving capabilities, to explore grounding line migration in response to projected sub-ice shelf basal melting. We find a contribution to sea level rise of between 2.0 cm and 4.5 cm by 2100 under RCP8.5 conditions from the CMIP5 subset, where the mass loss response is linearly related to the mean ocean temperature anomaly. To account for uncertainty associated with model initialisation, we perform three further sets of CMIP5 forced experiments using different parameterisations that explore perturbations to the prescription of initial basal melt, the basal traction coefficient, and the ice stiffening factor. We find that the response of the ASE to ocean temperature forcing is highly dependent on the parameter fields obtained in the initialisation procedure, where the sensitivity of the ASE ice streams to the sub-ice shelf melt forcing is dependent on the choice of parameter set. Accounting for ice sheet model parameter uncertainty results in a projected range in sea level equivalent contribution from the ASE of between −0.02 cm and 12.1 cm by the end of the 21st century.


2018 ◽  
Vol 12 (7) ◽  
pp. 2461-2479 ◽  
Author(s):  
Frazer D. W. Christie ◽  
Robert G. Bingham ◽  
Noel Gourmelen ◽  
Eric J. Steig ◽  
Rosie R. Bisset ◽  
...  

Abstract. Over the past 20 years satellite remote sensing has captured significant downwasting of glaciers that drain the West Antarctic Ice Sheet into the ocean, particularly across the Amundsen Sea Sector. Along the neighbouring Marie Byrd Land Sector, situated west of Thwaites Glacier to Ross Ice Shelf, glaciological change has been only sparsely monitored. Here, we use optical satellite imagery to track grounding-line migration along the Marie Byrd Land Sector between 2003 and 2015, and compare observed changes with ICESat and CryoSat-2-derived surface elevation and thickness change records. During the observational period, 33 % of the grounding line underwent retreat, with no significant advance recorded over the remainder of the ∼ 2200 km long coastline. The greatest retreat rates were observed along the 650 km-long Getz Ice Shelf, further west of which only minor retreat occurred. The relative glaciological stability west of Getz Ice Shelf can be attributed to a divergence of the Antarctic Circumpolar Current from the continental-shelf break at 135∘ W, coincident with a transition in the morphology of the continental shelf. Along Getz Ice Shelf, grounding-line retreat reduced by 68 % during the CryoSat-2 era relative to earlier observations. Climate reanalysis data imply that wind-driven upwelling of Circumpolar Deep Water would have been reduced during this later period, suggesting that the observed slowdown was a response to reduced oceanic forcing. However, lack of comprehensive oceanographic and bathymetric information proximal to Getz Ice Shelf's grounding zone make it difficult to assess the role of intrinsic glacier dynamics, or more complex ice-sheet–ocean interactions, in moderating this slowdown. Collectively, our findings underscore the importance of spatial and inter-decadal variability in atmosphere and ocean interactions in moderating glaciological change around Antarctica.


2021 ◽  
Author(s):  
Tamsin Edwards ◽  

&lt;p&gt;&lt;strong&gt;The land ice contribution to global mean sea level rise has not yet been predicted with ice sheet and glacier models for the latest set of socio-economic scenarios (SSPs), nor with coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects (ISMIP6 and GlacierMIP) generated a large suite of projections using multiple models, but mostly used previous generation scenarios and climate models, and could not fully explore known uncertainties. &lt;/strong&gt;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Here we estimate probability distributions for these projections for the SSPs using Gaussian Process emulation of the ice sheet and glacier model ensembles. We model the sea level contribution as a function of global mean surface air temperature forcing and (for the ice sheets) model parameters, with the 'nugget' allowing for multi-model structural uncertainty. Approximate independence of ice sheet and glacier models is assumed, because a given model responds very differently under different setups (such as initialisation). &lt;/strong&gt;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;We find that limiting global warming to 1.5&lt;/strong&gt;&amp;#176;&lt;strong&gt;C &lt;/strong&gt;&lt;strong&gt;would halve the land ice contribution to 21&lt;sup&gt;st&lt;/sup&gt; century &lt;/strong&gt;&lt;strong&gt;sea level rise&lt;/strong&gt;&lt;strong&gt;, relative to current emissions pledges: t&lt;/strong&gt;&lt;strong&gt;he median decreases from 25 to 13 cm sea level equivalent (SLE) by 2100. However, the Antarctic contribution does not show a clear response to emissions scenario, due to competing processes of increasing ice loss and snowfall accumulation in a warming climate. &lt;/strong&gt;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;However, under risk-averse (pessimistic) assumptions for climate and Antarctic ice sheet model selection and ice sheet model parameter values, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 cm SLE under current policies and pledges, with the 95&lt;sup&gt;th&lt;/sup&gt; percentile exceeding half a metre even under 1.5&lt;/strong&gt;&amp;#176;&lt;strong&gt;C warming. &lt;/strong&gt;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Gaussian Process emulation can therefore be a powerful tool for estimating probability density functions from multi-model ensembles and testing the sensitivity of the results to assumptions.&lt;/strong&gt;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document