scholarly journals Towards understanding the pattern of glacier mass balances in High Mountain Asia using regional climatic modelling

2020 ◽  
Vol 14 (9) ◽  
pp. 3215-3234 ◽  
Author(s):  
Remco J. de Kok ◽  
Philip D. A. Kraaijenbrink ◽  
Obbe A. Tuinenburg ◽  
Pleun N. J. Bonekamp ◽  
Walter W. Immerzeel

Abstract. Glaciers in High Mountain Asia (HMA) provide an important water resource for communities downstream, and they are markedly impacted by global warming, yet there is a lack of understanding of the observed glacier mass balances and their spatial variability. In particular, the glaciers in the western Kunlun Shan and Karakoram (WKSK) ranges show neutral to positive mass balances despite global warming. Using models of the regional climate and glacier mass balance, we reproduce the observed patterns of glacier mass balance in High Mountain Asia of the last decades within uncertainties. We show that low temperature sensitivities of glaciers and an increase in snowfall, for a large part caused by increases in evapotranspiration from irrigated agriculture, result in positive mass balances in the WKSK. The pattern of mass balances in High Mountain Asia can thus be understood from the combination of changes in climatic forcing and glacier properties, with an important role for irrigated agriculture.

2019 ◽  
Author(s):  
Remco J. de Kok ◽  
Philip D. A. Kraaijenbrink ◽  
Obbe A. Tuinenburg ◽  
Pleun N. J. Bonekamp ◽  
Walter W. Immerzeel

Abstract. Glaciers in High Mountain Asia provide an important water resource for communities downstream and they are markedly impacted by global warming, yet there is a lack in understanding of the observed glacier mass balances and their spatial variability. In particular, the glaciers in the western Kunlun Shan and Karakoram ranges (WKSK) show neutral to positive mass balances despite global warming. Using models of the regional climate and glacier mass balance, we reproduce the observed patterns of glacier mass balance in High Mountain Asia of the last decades. We show that low temperature sensitivities of glaciers and an increase in snowfall, for a large part caused by increases in evapotranspiration from irrigated agriculture, result in positive mass balances in WKSK. The pattern of mass balances in High Mountain Asia can thus be understood from the combination of changes in climatic forcing and glacier properties, with an important role for irrigated agriculture.


2019 ◽  
Vol 11 (3) ◽  
pp. 260 ◽  
Author(s):  
David Farías-Barahona ◽  
Sebastián Vivero ◽  
Gino Casassa ◽  
Marius Schaefer ◽  
Flavia Burger ◽  
...  

The Echaurren Norte Glacier is a reference glacier for the World Glacier Monitoring Service (WGMS) network and has the longest time series of glacier mass balance data in the Southern Hemisphere. The data has been obtained by the direct glaciological method since 1975. In this study, we calculated glacier area changes using satellite images and historical aerial photographs, as well as geodetic mass balances for different periods between 1955 and 2015 for the Echaurren Norte Glacier in the Central Andes of Chile. Over this period, this glacier lost 65% of its original area and disaggregated into two ice bodies in the late 1990s. The geodetic mass balances were calculated by differencing digital elevation models derived from several sources. The results indicated a mean cumulative glacier wide mass loss of −40.64 ± 5.19 m w.e. (−0.68 ± 0.09 m w.e. a−1). Within this overall downwasting trend, a positive mass balance of 0.54 ± 0.40 m w.e. a−1 was detected for the period 2000–2009. These estimates agree with the results obtained with the glaciological method during the same time span. Highly negative mass change rates were found from 2010 onwards, with −1.20 ± 0.09 m w.e. a−1 during an unprecedented drought in Central Andes of Chile. The observed area and the elevation changes indicate that the Echaurren Norte Glacier may disappear in the coming years if negative mass balance rates prevail.


2016 ◽  
Author(s):  
Adam M. Clark ◽  
Daniel B. Fagre ◽  
Erich H. Peitzsch ◽  
Blase A. Reardon ◽  
Joel T. Harper

Abstract. Glacier mass balance measurements help to provide an understanding of the behavior of glaciers and their response to local and regional climate influences. In 2005, the United States Geological Survey established a surface mass balance monitoring program on Sperry Glacier, Montana, USA. This program is the first quantitative study of mass changes of a glacier in this region and continues to the present. This paper describes the methods used during the first eleven years of measurements and reports the associated results. Between years 2005–2015, we estimate Sperry Glacier lost approximately 4.37 m of water equivalent averaged over its entire area. The mean winter, summer, and annual glacier-wide mass balances were 2.92 m per year, −3.41 m per year, and −0.40 m per year respectively. We derive these cumulative and mean results from an expansive dataset of snow depth, snow density, and ablation measurements taken at selected points on the glacier, the resultant mass balance point values for these measurement sites, and a time series of seasonal and annual glacier-wide mass balances for all eleven measurement years. We also provide measurements of total glacier surface and accumulation areas for select years. All data have been submitted to the World Glacier Monitoring Service and are available at http://dx.doi.org/10.5904/wgms-fog-2016-08. This foundational data enhances our basic understanding of mass balance of Sperry Glacier, and future work will focus on the processes that control accumulation and ablation patterns across the glacier.


2016 ◽  
Vol 10 (1) ◽  
pp. 133-148 ◽  
Author(s):  
R. Prinz ◽  
L. I. Nicholson ◽  
T. Mölg ◽  
W. Gurgiser ◽  
G. Kaser

Abstract. The Lewis Glacier on Mt. Kenya is one of the best studied tropical glaciers and has experienced considerable retreat since a maximum extent in the late 19th century (L19). From distributed mass and energy balance modelling, this study evaluates the current sensitivity of the surface mass and energy balance to climatic drivers, explores climate conditions under which the L19 maximum extent might have been sustained, and discusses the potential for using the glacier retreat to quantify climate change. Multi-year meteorological measurements at 4828 m provide data for input, optimization, and evaluation of a spatially distributed glacier mass balance model to quantify the exchanges of energy and mass at the glacier–atmosphere interface. Currently the glacier loses mass due to the imbalance between insufficient accumulation and enhanced melt, because radiative energy gains cannot be compensated by turbulent energy sinks. Exchanging model input data with synthetic climate scenarios, which were sampled from the meteorological measurements and account for coupled climatic variable perturbations, reveals that the current mass balance is most sensitive to changes in atmospheric moisture (via its impact on solid precipitation, cloudiness, and surface albedo). Positive mass balances result from scenarios with an increase of annual (seasonal) accumulation of 30 % (100 %), compared to values observed today, without significant changes in air temperature required. Scenarios with lower air temperatures are drier and associated with lower accumulation and increased net radiation due to reduced cloudiness and albedo. If the scenarios currently producing positive mass balances are applied to the L19 extent, negative mass balances are the result, meaning that the conditions required to sustain the glacier in its L19 extent are not reflected in today's meteorological observations using model parameters optimized for the present-day glacier. Alternatively, a balanced mass budget for the L19 extent can be achieved by changing both climate and optimized gradients (used to extrapolate the meteorological measurements over the glacier) in a manner that implies a distinctly different coupling between the glacier's local surface-air layer and its surrounding boundary layer. This result underlines the difficulty of deriving palaeoclimates for larger glacier extents on the basis of modern measurements of small glaciers.


2016 ◽  
Vol 10 (2) ◽  
pp. 927-940 ◽  
Author(s):  
Mariano H. Masiokas ◽  
Duncan A. Christie ◽  
Carlos Le Quesne ◽  
Pierre Pitte ◽  
Lucas Ruiz ◽  
...  

Abstract. Despite the great number and variety of glaciers in southern South America, in situ glacier mass-balance records are extremely scarce and glacier–climate relationships are still poorly understood in this region. Here we use the longest (>  35 years) and most complete in situ mass-balance record, available for the Echaurren Norte glacier (ECH) in the Andes at  ∼  33.5° S, to develop a minimal glacier surface mass-balance model that relies on nearby monthly precipitation and air temperature data as forcing. This basic model is able to explain 78 % of the variance in the annual glacier mass-balance record over the 1978–2013 calibration period. An attribution assessment identified precipitation variability as the dominant forcing modulating annual mass balances at ECH, with temperature variations likely playing a secondary role. A regionally averaged series of mean annual streamflow records from both sides of the Andes between  ∼  30 and 37° S is then used to estimate, through simple linear regression, this glacier's annual mass-balance variations since 1909. The reconstruction model captures 68 % of the observed glacier mass-balance variability and shows three periods of sustained positive mass balances embedded in an overall negative trend over the past 105 years. The three periods of sustained positive mass balances (centered in the 1920s–1930s, in the 1980s and in the first decade of the 21st century) coincide with several documented glacier advances in this region. Similar trends observed in other shorter glacier mass-balance series suggest that the Echaurren Norte glacier reconstruction is representative of larger-scale conditions and could be useful for more detailed glaciological, hydrological and climatological assessments in this portion of the Andes.


2015 ◽  
Vol 9 (4) ◽  
pp. 3887-3924
Author(s):  
R. Prinz ◽  
L. I. Nicholson ◽  
T. Mölg ◽  
W. Gurgiser ◽  
G. Kaser

Abstract. The Lewis Glacier on Mt Kenya is one of the best studied tropical glaciers and has experienced considerable retreat since a maximum extent in the late 19th century (L19). From distributed mass and energy balance modelling, this study evaluates the current sensitivity of the surface mass and energy balance to climatic drivers, explores climate conditions under which the L19 maximum extent might have sustained, and discusses the potential for using the glacier retreat to quantify climate change. Multiyear meteorological measurements at 4828 m provide data for input, optimization and evaluation of a spatially distributed glacier mass balance model to quantify the exchanges of energy and mass at the glacier–atmosphere interface. Currently the glacier loses mass due to the imbalance between insufficient accumulation and enhanced melt, because radiative energy gains cannot be compensated by turbulent energy sinks. Exchanging model input data with synthetic climate scenarios, which were sampled from the meteorological measurements and account for coupled climatic variable perturbations, reveal that the current mass balance is most sensitive to changes in atmospheric moisture (via its impact on solid precipitation, cloudiness and surface albedo). Positive mass balances result from scenarios with an increase of annual (seasonal) accumulation of 30 % (100 %), compared to values observed today, without significant changes in air temperature required. Scenarios with lower air temperatures are drier and associated with lower accumulation and increased net radiation due to reduced cloudiness and albedo. If the scenarios currently producing positive mass balances are applied to the L19 extent, negative mass balances are the result, meaning that the conditions required to sustain the glacier in its L19 extent are not reflected in today's observations. Alternatively, a balanced mass budget for the L19 extent can be explained by changing model parameters that imply a distinctly different coupling between the glacier's local surface-air layer and its surrounding boundary-layer. This result underlines the difficulty of deriving paleoclimates for larger glacier extents on the basis of modern measurements of small glaciers.


2015 ◽  
Vol 9 (5) ◽  
pp. 4949-4980 ◽  
Author(s):  
M. H. Masiokas ◽  
D. A. Christie ◽  
C. Le Quesne ◽  
P. Pitte ◽  
L. Ruiz ◽  
...  

Abstract. Despite the great number and variety of glaciers in southern South America, in situ glacier mass balance records are extremely scarce and glacier–climate relationships are still poorly understood in this region. Here we use the longest (> 35 years) and most complete in situ mass balance record, available for glaciar Echaurren Norte in the Andes at ~34° S, to develop a minimal glacier surface mass balance model that relies on nearby monthly precipitation and air temperature data as forcing. This basic model is able to explain 78 % of the variance in the annual glacier mass balance record over the 1978–2013 calibration period. An attribution assessment indicates that precipitation variability constitutes the most important forcing modulating annual glacier mass balances at this site. A regionally-averaged series of mean annual streamflow records from both sides of the Andes is then used to estimate, through simple linear regression, this glacier's annual mass balance variations since 1909. The reconstruction model captures 68 % of the observed glacier mass balance variability and shows three periods of sustained positive mass balances embedded in an overall negative trend totaling almost −42 m w.eq. over the past 105 years. The three periods of sustained positive mass balances (centered in the 1920s–1930s, in the 1980s and in the first decade of the 21st century) coincide with several documented glacier advances in this region. Similar trends observed in other shorter glacier mass balance series suggest the glaciar Echaurren Norte reconstruction is representative of larger-scale conditions and could be useful for more detailed glaciological, hydrological and climatological assessments in this portion of the Andes.


2019 ◽  
Vol 13 (9) ◽  
pp. 2361-2383 ◽  
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Huilin Li ◽  
Feiteng Wang ◽  
Ping Zhou

Abstract. The direct glaciological method provides in situ observations of annual or seasonal surface mass balance, but can only be implemented through a succession of intensive in situ measurements of field networks of stakes and snow pits. This has contributed to glacier surface mass-balance measurements being sparse and often discontinuous in the Tien Shan. Nevertheless, long-term glacier mass-balance measurements are the basis for understanding climate–glacier interactions and projecting future water availability for glacierized catchments in the Tien Shan. Riegl VZ®-6000 long-range terrestrial laser scanner (TLS), typically using class 3B laser beams, is exceptionally well suited for repeated glacier mapping, and thus determination of annual and seasonal geodetic mass balance. This paper introduces the applied TLS for monitoring summer and annual surface elevation and geodetic mass changes of Urumqi Glacier No. 1 as well as delineating accurate glacier boundaries for 2 consecutive mass-balance years (2015–2017), and discusses the potential of such technology in glaciological applications. Three-dimensional changes of ice and firn–snow bodies and the corresponding densities were considered for the volume-to-mass conversion. The glacier showed pronounced thinning and mass loss for the four investigated periods; glacier-wide geodetic mass balance in the mass-balance year 2015–2016 was slightly more negative than in 2016–2017. Statistical comparison shows that agreement between the glaciological and geodetic mass balances can be considered satisfactory, indicating that the TLS system yields accurate results and has the potential to monitor remote and inaccessible glacier areas where no glaciological measurements are available as the vertical velocity component of the glacier is negligible. For wide applications of the TLS in glaciology, we should use stable scan positions and in-situ-measured densities of snow–firn to establish volume-to-mass conversion.


2010 ◽  
Vol 4 (3) ◽  
pp. 1151-1194
Author(s):  
A. Fischer

Abstract. Glacier mass balance is measured with the direct or the geodetic method. In this study, the geodetic mass balances of six Austrian glaciers in 19 periods between 1953 and 2006 are compared to the direct mass balances in the same periods. The mean annual geodetic mass balance for all periods is −0.5 m w.e./year. The mean difference between the geodetic and the direct data is −0.7 m w.e., the minimum −7.3 m w.e. and the maximum 5.6 m w.e. The accuracy of geodetic mass balance resulting from the accuracy of the DEMs ranges from 2 m w.e. for photogrammetric data to 0.002 m w.e. for LIDAR data. Basal melt, seasonal snow cover and density changes of the surface layer contribute up to 0.7 m w.e. for the period of 10 years to the difference to the direct method. The characteristics of published data of Griesgletscher, Gulkana Glacier, Lemon Creek glacier, South Cascade, Storbreen, Storglaciären, and Zongo Glacier is similar to these Austrian glaciers. For 26 analyzed periods with an average length of 18 years the mean difference between the geodetic and the direct data is −0.4 m w.e., the minimum −7.2 m w.e. and the maximum 3.6 m w.e. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Specific glaciers show specific trends of the difference between the direct and the geodetic data according to their type and state. In conclusion, geodetic and direct mass balance data are complementary, but differ systematically.


2021 ◽  
Author(s):  
Johannes Marian Landmann ◽  
Matthias Huss ◽  
Hans Rudolf Künsch ◽  
Christophe Ogier ◽  
Lea Geibel ◽  
...  

<p>As glaciers shrink, high interest in their near real-time mass balance arises. This is mainly for two reasons: first, there are concerns about water availability and short-term water resource planning, and second, glaciers are one of the most prominent indicators of climate change, resulting in a high interest of the broader public.</p><p>To satisfy both interests regarding information on near real-time mass balance, we are running the project CRAMPON – “Cryospheric Monitoring and Prediction Online”. Within this project, we set up an operational assimilation platform where it is possible to query daily mass balance estimates in near real-time, i.e. updated with a lag of max. 24 hours. During the operational alpha phase, we increase the amount of modelled glaciers and assimilated observations steadily. We start with about 15 glaciers from the Glacier Monitoring Switzerland (GLAMOS) program, for which time series of seasonal mass balances from the glaciological method are available. After that, we expand our set of modelled glaciers to about 50 glaciers that have frequent geodetic mass balances in the past, and finally to all glaciers in Switzerland. The assimilated observations reach from the operational GLAMOS seasonal mass balance observations via daily point mass balances from nine in situ cameras providing instantaneous ablation rates to satellite-derived albedo and snow distribution on the glacier.<br>As basis for the platform, we run an ensemble of three temperature index and one simplified energy balance melt models. This ensemble takes gridded temperature, precipitation and radiation as input and aims at quantifying uncertainties of the produced daily mass balances. To determine uncertainties in the model prediction of a current mass budget year correctly, we run the models with parameter distributions we have fitted on individual parameter sets calibrated in the past. Since a purely model-based prediction can reveal high uncertainties though, we choose a sequential data assimilation approach in the form of a Particle Filter to constrain this uncertainty with observations, whenever available. We have customized the standard Particle Filter to (1) use a resampling method that is able to keep models in the ensemble despite a temporary bad performance, and (2) allow parameter and model probability evolution over time.</p><p>In this contribution, we focus on giving a holistic overview over the already existing platform features and discuss the future developments. We plan to make the calculated mass balances publicly available in summer 2021, and to extend this platform to the global scale at a later stage.</p>


Sign in / Sign up

Export Citation Format

Share Document