scholarly journals Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales

2021 ◽  
Vol 15 (5) ◽  
pp. 2451-2471
Author(s):  
Thomas Schneider von Deimling ◽  
Hanna Lee ◽  
Thomas Ingeman-Nielsen ◽  
Sebastian Westermann ◽  
Vladimir Romanovsky ◽  
...  

Abstract. Infrastructure built on perennially frozen ice-rich ground relies heavily on thermally stable subsurface conditions. Climate-warming-induced deepening of ground thaw puts such infrastructure at risk of failure. For better assessing the risk of large-scale future damage to Arctic infrastructure, improved strategies for model-based approaches are urgently needed. We used the laterally coupled 1D heat conduction model CryoGrid3 to simulate permafrost degradation affected by linear infrastructure. We present a case study of a gravel road built on continuous permafrost (Dalton highway, Alaska) and forced our model under historical and strong future warming conditions (following the RCP8.5 scenario). As expected, the presence of a gravel road in the model leads to higher net heat flux entering the ground compared to a reference run without infrastructure and thus a higher rate of thaw. Further, our results suggest that road failure is likely a consequence of lateral destabilisation due to talik formation in the ground beside the road rather than a direct consequence of a top-down thawing and deepening of the active layer below the road centre. In line with previous studies, we identify enhanced snow accumulation and ponding (both a consequence of infrastructure presence) as key factors for increased soil temperatures and road degradation. Using differing horizontal model resolutions we show that it is possible to capture these key factors and their impact on thawing dynamics with a low number of lateral model units, underlining the potential of our model approach for use in pan-Arctic risk assessments. Our results suggest a general two-phase behaviour of permafrost degradation: an initial phase of slow and gradual thaw, followed by a strong increase in thawing rates after the exceedance of a critical ground warming. The timing of this transition and the magnitude of thaw rate acceleration differ strongly between undisturbed tundra and infrastructure-affected permafrost ground. Our model results suggest that current model-based approaches which do not explicitly take into account infrastructure in their designs are likely to strongly underestimate the timing of future Arctic infrastructure failure. By using a laterally coupled 1D model to simulate linear infrastructure, we infer results in line with outcomes from more complex 2D and 3D models, but our model's computational efficiency allows us to account for long-term climate change impacts on infrastructure from permafrost degradation. Our model simulations underline that it is crucial to consider climate warming when planning and constructing infrastructure on permafrost as a transition from a stable to a highly unstable state can well occur within the service lifetime (about 30 years) of such a construction. Such a transition can even be triggered in the coming decade by climate change for infrastructure built on high northern latitude continuous permafrost that displays cold and relatively stable conditions today.

2020 ◽  
Author(s):  
Thomas Schneider von Deimling ◽  
Hanna Lee ◽  
Thomas Ingeman-Nielsen ◽  
Sebastian Westermann ◽  
Vladimir Romanovsky ◽  
...  

Abstract. Infrastructure built on perennially frozen ice-rich ground relies heavily on thermally stable subsurface conditions. Climate warming-induced deepening of ground thaw puts such infrastructure at risk of failure. For better assessing the risk of large-scale future damage to Arctic infrastructure, improved strategies for model-based approaches are urgently needed. We used the laterally-coupled one-dimensional heat conduction model CryoGrid3 to simulate permafrost degradation affected by linear infrastructure. We present a case study of a gravel road built on continuous permafrost (Dalton highway, Alaska) and forced our model under historical and strong future warming conditions (following the RCP8.5 scenario). As expected, the presence of a gravel road in the model leads to higher net heat flux entering the ground compared to a reference run without infrastructure, and thus a higher rate of thaw. Further, our results suggest that road failure is likely a consequence of lateral destabilization due to talik formation in the ground beside the road, rather than a direct consequence of a top-down thawing and deepening of the active layer below the road centre. In line with previous studies, we identify enhanced snow accumulation and ponding (both a consequence of infrastructure presence) as key factors for increased soil temperatures and road degradation. Using differing horizontal model resolutions we show that it is possible to capture these key factors and their impact on thawing dynamics with a low number of lateral model units, underlining the potential of our model approach for use in pan-arctic risk assessments. Our results suggest a general two-phase behaviour of permafrost degradation: an initial phase of slow and gradual thaw, followed by a strong increase in thawing rates after exceedance of a critical ground warming. The timing of this transition and the magnitude of thaw rate acceleration differ strongly between undisturbed tundra and infrastructure-affected permafrost ground. Our model results suggest that current model-based approaches which do not explicitly take into account infrastructure in their designs are likely to strongly underestimate the timing of future Arctic infrastructure failure. By using a laterally-coupled one-dimensional model to simulate linear infrastructure, we infer results in line with outcomes from more complex 2D- and 3D-models, but our model's computational efficiency allows us to account for long-term climate change impacts on infrastructure from permafrost degradation. Our model simulations underline that it is crucial to consider climate warming when planning and constructing infrastructure on permafrost as a transition from a stable to a highly unstable state can well occur within the service life time (about 30 years) of such a construction. Such a transition can even be triggered in the coming decade by climate change for infrastructure built on high northern latitude continuous permafrost that displays cold and relatively stable conditions today.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1817
Author(s):  
Oleg S. Pokrovsky ◽  
Rinat M. Manasypov ◽  
Sergey G. Kopysov ◽  
Ivan V. Krickov ◽  
Liudmila S. Shirokova ◽  
...  

The assessment of riverine fluxes of carbon, nutrients, and metals in surface waters of permafrost-affected regions is crucially important for constraining adequate models of ecosystem functioning under various climate change scenarios. In this regard, the largest permafrost peatland territory on the Earth, the Western Siberian Lowland (WSL) presents a unique opportunity of studying possible future changes in biogeochemical cycles because it lies within a south–north gradient of climate, vegetation, and permafrost that ranges from the permafrost-free boreal to the Arctic tundra with continuous permafrost at otherwise similar relief and bedrocks. By applying a “substituting space for time” scenario, the WSL south-north gradient may serve as a model for future changes due to permafrost boundary shift and climate warming. Here we measured export fluxes (yields) of dissolved organic carbon (DOC), major cations, macro- and micro- nutrients, and trace elements in 32 rivers, draining the WSL across a latitudinal transect from the permafrost-free to the continuous permafrost zone. We aimed at quantifying the impact of climate warming (water temperature rise and permafrost boundary shift) on DOC, nutrient and metal in rivers using a “substituting space for time” approach. We demonstrate that, contrary to common expectations, the climate warming and permafrost thaw in the WSL will likely decrease the riverine export of organic C and many elements. Based on the latitudinal pattern of riverine export, in the case of a northward shift in the permafrost zones, the DOC, P, N, Si, Fe, divalent heavy metals, trivalent and tetravalent hydrolysates are likely to decrease the yields by a factor of 2–5. The DIC, Ca, SO4, Sr, Ba, Mo, and U are likely to increase their yields by a factor of 2–3. Moreover, B, Li, K, Rb, Cs, N-NO3, Mg, Zn, As, Sb, Rb, and Cs may be weakly affected by the permafrost boundary migration (change of yield by a factor of 1.5 to 2.0). We conclude that modeling of C and element cycle in the Arctic and subarctic should be region-specific and that neglecting huge areas of permafrost peatlands might produce sizeable bias in our predictions of climate change impact.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
M Jevtic ◽  
C Bouland

Abstract Public health professionals (PHP) have a dual task in climate change. They should persuade their colleagues in clinical medicine of the importance of all the issues covered by the GD. The fact that the health sector contributes to the overall emissions of 4.4% speaks to the lack of awareness within the health sector itself. The issue of providing adequate infrastructure for the health sector is essential. Strengthening the opportunities and development of the circular economy within healthcare is more than just a current issue. The second task of PHP is targeting the broader population. The public health mission is being implemented, inter alia, through numerous activities related to environmental monitoring and assessment of the impact on health. GD should be a roadmap for priorities and actions in public health, bearing in mind: an ambitious goal of climate neutrality, an insistence on clean, affordable and safe energy, a strategy for a clean and circular economy. GD provides a framework for the development of sustainable and smart transport, the development of green agriculture and policies from field to table. It also insists on biodiversity conservation and protection actions. The pursuit of zero pollution and an environment free of toxic chemicals, as well as incorporating sustainability into all policies, is also an indispensable part of GD. GD represents a leadership step in the global framework towards a healthier future and comprises all the non-EU members as well. The public health sector should consider the GD as an argument for achieving goals at national levels, and align national public health policies with the goals of this document. There is a need for stronger advocacy of health and public-health interests along with incorporating sustainability into all policies. Achieving goals requires the education process for healthcare professionals covering all of topics of climate change, energy and air pollution to a much greater extent than before.


Author(s):  
Qian ZHOU ◽  
Naota HANASAKI ◽  
Shinichiro FUJIMORI ◽  
Yoshimitsu MASAKI ◽  
Yasuaki HIJIOKA

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 43
Author(s):  
Stella M. Moreiras ◽  
Sergio A. Sepúlveda ◽  
Mariana Correas-González ◽  
Carolina Lauro ◽  
Iván Vergara ◽  
...  

This review paper compiles research related to debris flows and hyperconcentrated flows in the central Andes (30°–33° S), updating the knowledge of these phenomena in this semiarid region. Continuous records of these phenomena are lacking through the Andean region; intense precipitations, sudden snowmelt, increased temperatures on high relief mountain areas, and permafrost degradation are related to violent flow discharges. Documented catastrophic consequences related to these geoclimatic events highlight the need to improve their understanding in order to prepare the Andean communities for this latent danger. An amplified impact is expected not only due to environmental changes potentially linked to climate change but also due to rising exposure linked to urban expansion toward more susceptible or unstable areas. This review highlights as well the need for the implementation of preventive measures to reduce the negative impacts and vulnerability of the Andean communities in the global warming context.


2014 ◽  
Vol 915-916 ◽  
pp. 459-463
Author(s):  
He Quan Zhang

In order to deal with the impact on traffic flow of the rule, we compare the influence factors of traffic flow (passing, etc.) into viscous resistance of fluid mechanics, and establish a traffic model based on fluid mechanics. First, in heavy and light traffic, we respectively use this model to simulate the actual segment of the road and find that when the traffic is heavy, the rule hinder the further increase in traffic. For this reason, we make further improvements to the model to obtain a fluid traffic model based on no passing and find that the improved model makes traffic flow increase significantly. Then, the improved model is applied to the light traffic, we find there are no significant changes in traffic flow .In this regard we propose a new rule: when the traffic is light, passing is allowed, but when the traffic is heavy, passing is not allowed.


2018 ◽  
Vol 42 (4) ◽  
pp. 415-430 ◽  
Author(s):  
Biao Zeng ◽  
Fuguang Zhang ◽  
Taibao Yang ◽  
Jiaguo Qi ◽  
Mihretab G Ghebrezgabher

Alpine sparsely vegetated areas (ASVAs) in mountains are sensitive to climate change and rarely studied. In this study, we focused on the response of ASVA distribution to climate change in the eastern Qilian Mountains (EQLM) from the 1990s to the 2010s. The ASVA distribution ranges in the EQLM during the past three decades were obtained from the Thematic Mapper remote sensing digital images by using the threshold of normalized difference vegetation index (NDVI) and artificial visual interpretation. Results indicated that the ASVA shrank gradually in the EQLM and lost its area by approximately 11.4% from the 1990s to the 2010s. The shrunken ASVA with markedly more area than the expanded one was mainly located at altitudes from 3700 m to 4300 m, which were comparatively lower than the average altitude of the ASVA distribution ranges. This condition led to the low ASVA boundaries in the EQLM moving upwards at a significant velocity of 22 m/decade at the regional scale. This vertical zonal process was modulated by topography-induced differences in local hydrothermal conditions. Thus, the ASVA shrank mainly in its lower parts with mild and sunny slopes. Annual maximum NDVI in the transition zone increased significantly and showed a stronger positive correlation with significantly increasing temperature than insignificant precipitation variations during 1990–2015. The ASVA shrinkage and up-shifting of its boundary were attributed to climate warming, which facilitated the upper part of alpine meadow in the EQLM by releasing the low temperature limitation on vegetation growth.


2008 ◽  
Vol 64 (3-4) ◽  
pp. 119-128 ◽  
Author(s):  
Alessandra Giannini ◽  
Michela Biasutti ◽  
Michel M. Verstraete

2009 ◽  
Vol 21 (5) ◽  
pp. 439-448 ◽  
Author(s):  
Wojciech Majewski ◽  
Andrzej Tatur

AbstractCribroelphidium webbi sp. nov. is the only adequately described sub-Recent elphidiid foraminifer from Antarctica. In Admiralty Bay (King George Island, South Shetland Islands), it is found at several locations within inner fiord setting at water depths between 33 and 165 m, but most commonly shallower than 100 m. In outer basins this foraminifer is absent. In the cores analysed, C. webbi sp. nov. is present in well-constrained sub-Recent horizons that are clearly related to climate warming and deglaciation. These horizons represent a diachronous facies marker rather than a single stratigraphic layer. Cribroelphidium webbi sp. nov. shows clear association with retreating tidewater glaciers, therefore it is an important sensitive glacier-proximal indicator. It appears that it shares similar ecologic affinities with Cribroelphidium excavatum clavatum, which is widely distributed throughout the Arctic.


Sign in / Sign up

Export Citation Format

Share Document