scholarly journals Upstream flow effects revealed in the EastGRIP ice core using Monte Carlo inversion of a two-dimensional ice-flow model

2021 ◽  
Vol 15 (8) ◽  
pp. 3655-3679
Author(s):  
Tamara Annina Gerber ◽  
Christine Schøtt Hvidberg ◽  
Sune Olander Rasmussen ◽  
Steven Franke ◽  
Giulia Sinnl ◽  
...  

Abstract. The Northeast Greenland Ice Stream (NEGIS) is the largest active ice stream on the Greenland Ice Sheet (GrIS) and a crucial contributor to the ice-sheet mass balance. To investigate the ice-stream dynamics and to gain information about the past climate, a deep ice core is drilled in the upstream part of the NEGIS, termed the East Greenland Ice-core Project (EastGRIP). Upstream flow can introduce climatic bias into ice cores through the advection of ice deposited under different conditions further upstream. This is particularly true for EastGRIP due to its location inside an ice stream on the eastern flank of the GrIS. Understanding and ultimately correcting for such effects requires information on the atmospheric conditions at the time and location of snow deposition. We use a two-dimensional Dansgaard–Johnsen model to simulate ice flow along three approximated flow lines between the summit of the ice sheet (GRIP) and EastGRIP. Isochrones are traced in radio-echo-sounding images along these flow lines and dated with the GRIP and EastGRIP ice-core chronologies. The observed depth–age relationship constrains the Monte Carlo method which is used to determine unknown model parameters. We calculate backward-in-time particle trajectories to determine the source location of ice found in the EastGRIP ice core and present estimates of surface elevation and past accumulation rates at the deposition site. Our results indicate that increased snow accumulation with increasing upstream distance is predominantly responsible for the constant annual layer thicknesses observed in the upper part of the ice column at EastGRIP, and the inverted model parameters suggest that basal melting and sliding are important factors determining ice flow in the NEGIS. The results of this study form a basis for applying upstream corrections to a variety of ice-core measurements, and the inverted model parameters are useful constraints for more sophisticated modelling approaches in the future.

2021 ◽  
Author(s):  
Tamara Annina Gerber ◽  
Christine Schøtt Hvidberg ◽  
Sune Olander Rasmussen ◽  
Steven Franke ◽  
Giulia Sinnl ◽  
...  

Abstract. The Northeast Greenland Ice Stream (NEGIS) is the largest active ice stream on the Greenland Ice Sheet (GrIS) and a crucial contributor to the ice-sheet mass balance. To investigate the ice-stream dynamics and to gain information about the past climate, a deep ice core is drilled in the upstream part of the NEGIS, termed the East Greenland Ice-Core Project (EastGRIP). Upstream flow effects introduce non-climatic bias in ice cores and are particularly strong at EastGRIP due to high ice-flow velocities and the location inside an ice stream on the eastern flank of the GrIS. Understanding and ultimately correcting for such effects requires information on the source area and the local atmospheric conditions at the time of ice deposition. We use a two-dimensional Dansgaard–Johnsen model to simulate ice flow along three approximated flow lines between the summit of the ice sheet (GRIP) and EastGRIP. Model parameters are determined using a Monte Carlo inversion by minimizing the misfit between modelled isochrones and isochrones observed in radio-echo-sounding (RES) images. We calculate backward-in-time particle trajectories to determine the source area of ice found in the EastGRIP ice core and present estimates of surface elevation and past accumulation rates at the deposition site. Our results indicate that increased accumulation in the upstream area is predominantly responsible for the constant annual layer thicknesses observed in the upper part of the ice column at EastGRIP. Inverted model parameters suggest that the imprint of basal melting and sliding is present in large segments along the flow profiles and that most internal ice deformation happens in the lower half of the ice column. The results of this study act as a basis for applying upstream corrections to a variety of ice-core measurements, and the model parameters are useful constraints for more sophisticated modelling approaches in the future.


2021 ◽  
Author(s):  
Tamara Annina Gerber ◽  
Christine Hvidberg ◽  
Aslak Grinsted ◽  
Daniela Jansen ◽  
Steven Franke ◽  
...  

<p>The North East Greenland ice-stream (NEGIS) is the largest active ice-stream on the Greenland ice-sheet and is a crucial contributor to the ice-sheet mass balance. To investigate the ice-stream dynamics and to gain information about the past climate, a deep ice-core is drilled in the upstream part of the NEGIS, termed the East Greenland ice-core project (EastGRIP). Upstream flow effects introduce non-climatic bias in ice-cores and are particularly strong at EastGRIP due to high ice-flow velocities and the location in an ice-stream on the eastern flank of the Greenland ice-sheet. Understanding and ultimately correcting for such effects requires information on the source area and the local atmospheric conditions at the time of ice deposition. We use a two-dimensional Dansgaard-Johnsen model to simulate ice-flow along three approximated flow-lines between the summit of the ice-sheet and EastGRIP. Model parameters are determined using a Monte Carlo inversion by minimizing the misfit between modeled isochrones and isochrones observed in radio-echo-sounding images. We calculate backward-in-time particle trajectories to determine the source area of ice found in the EastGRIP core today and present estimates of surface elevation and past accumulation-rates at the deposition site. The thinning function and accumulated strain obtained from the modeled velocity field provide useful information on the deformation history in the EastGRIP ice. Our results indicate that increased accumulation in the upstream area is predominantly responsible for the constant annual layer thickness observed in the upper part of the ice column at EastGRIP. Inverted model parameters suggest that the imprint of basal melting and sliding is present in large parts along the flow profiles and that most internal ice deformation happens close to the bedrock. The results of this study can act as a basis for applying upstream corrections to a variety of ice-core measurements, and the model parameters can be useful constraints for more sophisticated modeling approaches in the future. </p>


2021 ◽  
Author(s):  
Tamara Annina Gerber ◽  
Christine Schøtt Hvidberg ◽  
Sune Olander Rasmussen ◽  
Steven Franke ◽  
Giulia Sinnl ◽  
...  

2016 ◽  
Vol 63 (237) ◽  
pp. 22-38 ◽  
Author(s):  
ANDREAS BORN

ABSTRACTThe full history of ice sheet and climate interactions is recorded in the vertical profiles of geochemical tracers in polar ice sheets. Numerical simulations of these archives promise great advances both in the interpretation of these reconstructions and the validation of the models themselves. However, fundamental mathematical shortcomings of existing models subject tracers to spurious diffusion, thwarting straightforward solutions. Here, I propose a new vertical discretization for ice-sheet models that eliminates numerical diffusion entirely. Vertical motion through the model mesh is avoided by mimicking the real-world flow of ice as a thinning of underlying layers. A new layer is added to the surface at equidistant time intervals, isochronally, thus identifying each layer uniquely by its time of deposition and age. This new approach is implemented for a two-dimensional section through the summit of the Greenland ice sheet. The ability to directly compare simulations of vertical ice cores with reconstructed data is used to find optimal model parameters from a large ensemble of simulations. It is shown that because this tuning method uses information from all times included in the ice core, it constrains ice-sheet sensitivity more robustly than a realistic reproduction of the modern ice-sheet surface.


2007 ◽  
Vol 45 ◽  
pp. 137-142 ◽  
Author(s):  
Susanne L. Buchardt ◽  
Dorthe Dahl-Jensen

AbstractFrom radio-echo sounding (RES) surveys and ice core data it can be seen that the ice sheet is melting at the base in a large area in Northern Greenland. The RES images reveal internal layers in the ice. The layers are former deposition surfaces and are thus isochrones. Undulations of the isochrones in regions where the base is smooth suggest that the basal melt rate changes over short distances. This indicates that the geothermal heat flux is very high and has large spatial variability in Northern Greenland. In this study, the basal melt rate at the NorthGRIP drill site in North-Central Greenland is calculated by inverse modelling. We use simple one- and two-dimensional flow models to simulate the ice flow along the NNW-trending ice ridge leading to NorthGRIP. The accumulation is calculated from a dynamical model. Several ice flow parameters are unknown and must be estimated along with the basal melt rate using a Monte Carlo method. The Monte Carlo inversion is constrained by the observed isochrones, dated from the timescale established for the NorthGRIP ice core. The estimates of the basal melt rates around NorthGRIP are obtained from both the one- and two-dimensional models. Combining the estimated basal melt rates with the observed borehole temperatures allows us to convert the basal melt rates to geothermal heat flow values. From the two-dimensional model we find the basal melt rate and geothermal heat flux at NorthGRIP to be 6.1 mma–1 and 129 mWm–2, respectively.


2004 ◽  
Vol 50 (168) ◽  
pp. 3-16 ◽  
Author(s):  
H. Paul Jacobson ◽  
Edwin D. Waddington

AbstractTo better understand apparent stratigraphic disturbances in ice cores such as Greenland Ice Sheet Project 2 (GISP2), we examine how ice-sheet flow can transform gentle open folds into order-disturbing recumbent folds. The initial disturbances in the stratigraphy have their roots in transient dynamic processes and local rheological inhomogeneities, but the kinematics of even a simple ice-flow model can deform these disturbances enough to alter paleoclimatic interpretation of an ice core. The local vorticity number suggests which structures can be passively overturned, but analyzing the finite strain along particle paths gives a more complete picture, especially when taken relative to a hypothetical core location. Core-relative isochrones, or “pre-cores”, predict which stratigraphic disturbances will appear as obviously overturned layers in a core. The deformation-gradient tensor along particle paths allows us to calculate the rotation of segments of various reference slopes. These calculations suggest that observed 20° dips in the GISP2 core are rotating on a time-scale of a few hundred years and could result from distortions with much smaller slopes produced upstream. The time during which they can be recognized to be overturning is short because the rotation rate is high. Once overturned they are flattened further and may be hard to recognize, especially in the small cross-section of a core.


1997 ◽  
Vol 43 (143) ◽  
pp. 3-10 ◽  
Author(s):  
V.I. Morgan ◽  
C.W. Wookey ◽  
J. Li ◽  
T.D. van Ommen ◽  
W. Skinner ◽  
...  

AbstractThe aim of deep ice drilling on Law Dome, Antarctica, has been to exploit the special characteristics of Law Dome summit, i.e. low temperature and high accumulation near an ice divide, to obtain a high-resolution ice core for climatic/environmental studies of the Holocene and the Last Glacial Maximum (LGM). Drilling was completed in February 1993, when basal ice containing small fragments of rock was reached at a depth of 1196 m. Accurate ice dating, obtained by counting annual layers revealed by fine-detail δ18О, peroxide and electrical-conductivity measurements, is continuous down to 399 m, corresponding to a date of AD 1304. Sulphate concentration measurements, made around depths where conductivity tracing indicates volcanic fallout, allow confirmation of the dating (for Agung in 1963 and Tambora in 1815) or estimates of the eruption date from the ice dating (for the Kuwae, Vanuatu, eruption ~1457). The lower part of the core is dated by extrapolating the layer-counting using a simple model of the ice flow. At the LGM, ice-fabric measurements show a large decrease (250 to 14 mm2) in crystal size and a narrow maximum in c-axis vertically. The main zone of strong single-pole fabrics however, is located higher up in a broad zone around 900 m. Oxygen-isotope (δ18O) measurements show Holocene ice down to 1113 m, the LGM at 1133 m and warm (δ18O) about the same as Holocene) ice near the base of the ice sheet. The LGM/Holocene δ18O shift of 7.0‰, only ~1‰ larger than for Vostok, indicates that Law Dome remained an independent ice cap and was not overridden by the inland ice sheet in the Glacial.


2003 ◽  
Vol 36 ◽  
pp. 66-72 ◽  
Author(s):  
Martin Truffer ◽  
Keith A. Echelmeyer

AbstractFast-flowing ice streams and outlet glaciers provide the major avenues for ice flow from past and present ice sheets. These ice streams move faster than the surrounding ice sheet by a factor of 100 or more. Several mechanisms for fast ice-stream flow have been identified, leading to a spectrum of different ice-stream types. In this paper we discuss the two end members of this spectrum, which we term the “ice-stream” type (represented by the Siple Coast ice streams in West Antarctica) and the “isbræ” type (represented by Jakobshavn Isbræ in Greenland). The typical ice stream is wide, relatively shallow (∼1000 m), has a low surface slope and driving stress (∼10 kPa), and ice-stream location is not strongly controlled by bed topography. Fast flow is possible because the ice stream has a slippery bed, possibly underlain by weak, actively deforming sediments. The marginal shear zones are narrow and support most of the driving stress, and the ice deforms almost exclusively by transverse shear. The margins seem to be inherently unstable; they migrate, and there are plausible mechanisms for such ice streams to shut down. The isbræ type of ice stream is characterized by very high driving stresses, often exceeding 200 kPa. They flow through deep bedrock channels that are significantly deeper than the surrounding ice, and have steep surface slopes. Ice deformation includes vertical as well as lateral shear, and basal motion need not contribute significantly to the overall motion. The marginal shear zone stend to be wide relative to the isbræ width, and the location of isbræ and its margins is strongly controlled by bedrock topography. They are stable features, and can only shut down if the high ice flux cannot be supplied from the adjacent ice sheet. Isbræs occur in Greenland and East Antarctica, and possibly parts of Pine Island and Thwaites Glaciers, West Antarctica. In this paper, we compare and contrast the two types of ice streams, addressing questions such as ice deformation, basal motion, subglacial hydrology, seasonality of ice flow, and stability of the ice streams.


1999 ◽  
Vol 28 ◽  
pp. 83-89 ◽  
Author(s):  
A. J. Payne ◽  
D.J. Baldwin

AbstractThis work attempts to explain the fan-like landform assemblages observed in satellite images of the area covered by the former Scandinavian ice sheet (SIS). These assemblages have been interpreted as evidence of large ice streams within the SIS. If this interpretation is correct, then it calls into doubt current theories on the formation of ice streams. These theories regard soft sediment and topographic troughs as being the key determinants of ice-stream location. Neither can be used to explain the existence of ice streams on the flat, hard-rock area of the Baltic Shield. Initial results from a three-dimensional, thermomechanical ice-sheet model indicate that interactions between ice flow, form and temperature can create patterns similar to those mentioned above. The model uses a realistic, 20 km resolution gridded topography and a simple parameterization of accumulation and ablation. It produces patterns of maximum ice-sheet extent, which are similar to those reconstructed from the area’s glacial geomorphology. Flow in the maximum, equilibrium ice sheet is dominated by wedges of warm, low-viscosity, fast-flowing ice. These are separated by areas of cold, slow-flowing ice. This patterning appears to develop spontaneously as the modelled ice sheet grows.


Sign in / Sign up

Export Citation Format

Share Document