scholarly journals Fractionation of O<sub>2</sub>∕N<sub>2</sub> and Ar∕N<sub>2</sub> in the Antarctic ice sheet during bubble formation and bubble–clathrate hydrate transition from precise gas measurements of the Dome Fuji ice core

2021 ◽  
Vol 15 (12) ◽  
pp. 5529-5555
Author(s):  
Ikumi Oyabu ◽  
Kenji Kawamura ◽  
Tsutomu Uchida ◽  
Shuji Fujita ◽  
Kyotaro Kitamura ◽  
...  

Abstract. The variations of δO2/N2 and δAr/N2 in the Dome Fuji ice core were measured from 112 m (bubbly ice) to 2001 m (clathrate hydrate ice). Our method, combined with the low storage temperature of the samples (−50 ∘C), successfully excludes post-coring gas-loss fractionation signals from our data. From the bubbly ice to the middle of the bubble–clathrate transition zone (BCTZ) (112–800 m) and below the BCTZ (>1200 m), the δO2/N2 and δAr/N2 data exhibit orbital-scale variations similar to local summer insolation. The data in the lower BCTZ (800–1200 m) have large scatter, which may be caused by millimeter-scale inhomogeneity of air composition combined with finite sample lengths. The insolation signal originally recorded at the bubble close-off remains through the BCTZ, and the insolation signal may be reconstructed by analyzing long ice samples (more than 50 cm for the Dome Fuji core). In the clathrate hydrate zone, the scatter around the orbital-scale variability decreases with depth, indicating diffusive smoothing of δO2/N2 and δAr/N2. A simple gas diffusion model was used to reproduce the smoothing and thus constrain their permeation coefficients. The relationship between δAr/N2 and δO2/N2 is markedly different for the datasets representing bubble close-off (slope ∼ 0.5), bubble–clathrate hydrate transformation (∼1), and post-coring gas loss (∼0.2), suggesting that the contributions of the mass-independent and mass-dependent fractionation processes are different for those cases. The method and data presented here may be useful for improving the orbital dating of deep ice cores over the multiple glacial cycles and further studying non-insolation-driven signals (e.g., atmospheric composition) of these gases.

2021 ◽  
Author(s):  
Ikumi Oyabu ◽  
Kenji Kawamura ◽  
Tsutomu Uchida ◽  
Shuji Fujita ◽  
Kyotaro Kitamura ◽  
...  

Abstract. The variations of δO2/N2 and δAr/N2 in the Dome Fuji ice core were measured from 112 m (bubbly ice) to 2001 m (clathrate hydrate ice) at high precision. Our method, combined with the low storage temperature of the samples (−50 °C), successfully excludes post-coring gas-loss fractionation signals from our data. From the bubbly ice to the middle of the bubble-clathrate transition zone (BCTZ) (112–800 m) and below the BCTZ (> 1200 m), the δO2/N2 and δAr/N2 data exhibit orbital-scale variations similar to local summer insolation. The data in the lower BCTZ (800–1200 m) have large scatters, which may be caused by mm-scale inhomogeneity of air composition combined with finite sample lengths. The insolation signal originally recorded at the bubble close-off remains through the BCTZ, and the insolation signal may be reconstructed by analyzing long ice samples. In the clathrate hydrate zone, the scatters around the orbital-scale variability decrease with depth, indicating diffusive smoothing of δO2/N2 and δAr/N2. A simple gas diffusion model was used to reproduce the smoothing and thus constrain their permeation coefficients. The relationship between δAr/Ν2 and δO2/N2 is markedly different for the datasets representing bubble close-off (slope ~0.5), bubble-clathrate hydrate transformation (~1), and post-coring gas-loss (~0.2), suggesting that the contribution of the mass-independent and mass-dependent fractionation processes are different for those cases. The method and data presented here may be useful for improving the orbital dating of deep ice cores over the multiple glacial cycles and further studying non-insolation-driven signals (e.g., atmospheric composition) of these gases.


2016 ◽  
Vol 12 (4) ◽  
pp. 1061-1077 ◽  
Author(s):  
Rachael H. Rhodes ◽  
Xavier Faïn ◽  
Edward J. Brook ◽  
Joseph R. McConnell ◽  
Olivia J. Maselli ◽  
...  

Abstract. Advances in trace gas analysis allow localised, non-atmospheric features to be resolved in ice cores, superimposed on the coherent atmospheric signal. These high-frequency signals could not have survived the low-pass filter effect that gas diffusion in the firn exerts on the atmospheric history and therefore do not result from changes in the atmospheric composition at the ice sheet surface. Using continuous methane (CH4) records obtained from five polar ice cores, we characterise these non-atmospheric signals and explore their origin. Isolated samples, enriched in CH4 in the Tunu13 (Greenland) record are linked to the presence of melt layers. Melting can enrich the methane concentration due to a solubility effect, but we find that an additional in situ process is required to generate the full magnitude of these anomalies. Furthermore, in all the ice cores studied there is evidence of reproducible, decimetre-scale CH4 variability. Through a series of tests, we demonstrate that this is an artifact of layered bubble trapping in a heterogeneous-density firn column; we use the term “trapping signal” for this phenomenon. The peak-to-peak amplitude of the trapping signal is typically 5 ppb, but may exceed 40 ppb. Signal magnitude increases with atmospheric CH4 growth rate and seasonal density contrast, and decreases with accumulation rate. Significant annual periodicity is present in the CH4 variability of two Greenland ice cores, suggesting that layered gas trapping at these sites is controlled by regular, seasonal variations in the physical properties of the firn. Future analytical campaigns should anticipate high-frequency artifacts at high-melt ice core sites or during time periods with high atmospheric CH4 growth rate in order to avoid misinterpretation of such features as past changes in atmospheric composition.


2021 ◽  
pp. M55-2018-86
Author(s):  
Biancamaria Narcisi ◽  
Jean Robert Petit

AbstractDriven by successful achievements in recovering high-resolution ice records of climate and atmospheric composition through the Late Quaternary, new ice–tephra sequences from various sites of the East Antarctic Ice Sheet (EAIS) have been studied in the last two decades spanning an age range of a few centuries to 800 kyr. The tephrostratigraphic framework for the inner EAIS, based on ash occurrence in three multi-kilometre-deep ice cores, shows that the South Sandwich Islands represent a major source for tephra, highlighting the major role in the ash dispersal played by clockwise circum-Antarctic atmospheric circulation penetrating the Antarctic continent. Tephra records from the eastern periphery of the EAIS, however, are obviously influenced by explosive activity sourced in nearby Antarctic rift provinces. These tephra inventories have provided a fundamental complement to the near-vent volcanic record, in terms of both frequency/chronology of explosive volcanism and of magma chemical evolution through time. Despite recent progress, current data are still sparse. There is a need for further tephra studies to collect data from unexplored EAIS sectors, along with extending the tephra inventory back in time. Ongoing international palaeoclimatic initiatives of ice-core drilling could represent a significant motivation for the tephra community and for Quaternary Antarctic volcanologists.


2020 ◽  
Author(s):  
Rachael Rhodes ◽  
Xin Yang ◽  
Eric Wolff

&lt;p&gt;It is important to understand the magnitude and rate of past sea ice changes, as well as their timing relative to abrupt shifts in other components of Earth&amp;#8217;s climate system. Furthermore, records of past sea ice over the last few centuries are urgently needed to assess the scale of natural (internal) variability over decadal timescales. By continuously recording past atmospheric composition, polar ice cores have the potential to document changing sea ice conditions if atmospheric chemistry is altered. &amp;#160;Sea salt aerosol, specifically sodium (Na), and bromine enrichment (Br&lt;sub&gt;enr&lt;/sub&gt;, Br/Na enriched relative to seawater ratio) are two ice core sea ice proxies suggested following this premise.&lt;/p&gt;&lt;p&gt;Here we aim to move beyond a conceptual understanding of the controls on Na and Br&lt;sub&gt;enr&lt;/sub&gt; in ice cores by using process-based modelling to test hypotheses. We present results of experiments using a 3D global chemical transport model (p-TOMCAT) that represents marine aerosol emission, transport and deposition. Critically, the complex atmospheric chemistry of bromine is also included. Three fundamental issues will be examined: 1) the partitioning of Br between gas and aerosol phases, 2) sea salt aerosol production from first-year versus multi-year sea ice, and 3) the impact of increased acidity in the atmosphere due to human activity in the Arctic.&lt;/p&gt;


1985 ◽  
Vol 7 ◽  
pp. 125-129 ◽  
Author(s):  
C.U. Hammer

Polar ice cores offer datable past snow deposits in the form of annual ice layers, which reflect the past atmospheric composition. Trace substances in the cores are related to the past mid-tropospheric impurity load, this being due to the vast extent of the polar ice sheets (or ice caps), their surface elevations and remoteness from most aerosol sources. Volcanic eruptions add to the rather low background impurity load via their eruptive products. This paper concentrates on the widespread influence on atmospheric impurity loads caused by the acid gas products from volcanic eruptions. In particular the following subjects are discussed: acid volcanic signals in ice cores, latitude of eruptions as derived by ice-core analysis, inter-hemispheric dating of the two polar ice sheets by equatorial eruptions, volcanic deposits in ice cores during the last glacial period and climatic implications.


1988 ◽  
Vol 10 ◽  
pp. 209-209
Author(s):  
C.C. Langway ◽  
K. Goto-Azuma

Measurements of the chemical constituents in polar-snow deposits translate into chronological records representing a history of atmospheric composition for the periods involved. The 2037 m deep continuous and undisturbed ice core recovered at Dye 3, Greenland between 1979 and 1981 contains a temporal record of sequential snow deposits for the past 9 × 104 a B.P. (Dansgaard and others 1985). The upper 90 m of the deep core were unsuitable for chemistry studies, but stratigraphic continuity with present-day accumulation was obtained by hand-excavating a 5.4 m deep pit and augering two shallow cores to 138 and 113 m depths. The pit and shallow cores represent the last two centuries of snow precipitation.To date, over 6000 individual samples of the pit, shallow and deep ice cores have been measured by ion chromatography for Cl−, NO3−, and SO42− in the field and laboratory (Herron and Langway 1985, Finkel and Langway 1985, Finkel and others 1986), under clean-room conditions. All pit and shallow-core samples were prepared in a continuous sequence of eight samples per year, as identified by other stable and radioactive isotope-dating methods. The deep ice-core samples were selected and prepared from core intervals spaced over the 2037 m profile from time units which showed evidence of abrupt or transitory periods in climate change or volcanic disturbances, as defined by stable isotopes (Dansgaard and others 1985), atmospheric gases (Oeschger and others 1985) and dust (Hammer and others 1985).Approximately 1700 new measurements from the Dye 3 samples are included in this study. Variability in the chemical constituents and their concentration levels is present and meaningful on a short-term and long-term basis. The time units measured represent seasons, years, decades, centuries and longer geological periods. Particular attention is given to two new high- and low-frequency detailed chronological data sets from (1) a continuous 26 m core profile, representing 3000 years, extending from the Holocene/Wisconsin boundary back into the late Wisconsin and (2) measurements made on 106 samples spaced every 2 m over the Wisconsin-age ice from 1786 to 2008 m.


1985 ◽  
Vol 7 ◽  
pp. 125-129 ◽  
Author(s):  
C.U. Hammer

Polar ice cores offer datable past snow deposits in the form of annual ice layers, which reflect the past atmospheric composition. Trace substances in the cores are related to the past mid-tropospheric impurity load, this being due to the vast extent of the polar ice sheets (or ice caps), their surface elevations and remoteness from most aerosol sources. Volcanic eruptions add to the rather low background impurity load via their eruptive products. This paper concentrates on the widespread influence on atmospheric impurity loads caused by the acid gas products from volcanic eruptions. In particular the following subjects are discussed: acid volcanic signals in ice cores, latitude of eruptions as derived by ice-core analysis, inter-hemispheric dating of the two polar ice sheets by equatorial eruptions, volcanic deposits in ice cores during the last glacial period and climatic implications.


2021 ◽  
Author(s):  
Rachael Rhodes ◽  
Xin Yang ◽  
Eric Wolff

&lt;p&gt;It is important to understand the magnitude and rate of past sea ice changes, as well as their timing relative to abrupt shifts in other components of Earth&amp;#8217;s climate system. Furthermore, records of past sea ice over the last few centuries are urgently needed to assess the scale of natural (internal) variability over decadal timescales. By continuously recording past atmospheric composition, polar ice cores have the potential to document changing sea ice conditions if atmospheric chemistry is altered.&amp;#160; Sea salt aerosol, specifically sodium (Na), and bromine enrichment (Br&lt;sub&gt;enr&lt;/sub&gt;, Br/Na enriched relative to seawater ratio) are two ice core sea ice proxies suggested following this premise.&lt;/p&gt;&lt;p&gt;Here we aim to move beyond a conceptual understanding of the controls on Na and Br&lt;sub&gt;enr&lt;/sub&gt; in ice cores by using process-based modelling to test hypotheses. We present results of experiments using a 3D global chemical transport model (p-TOMCAT) that represents marine aerosol emission, transport and deposition. Critically, the complex atmospheric chemistry of bromine is also included allowing us to explore the partitioning of Br between gas and aerosol phases. &amp;#160;&lt;/p&gt;


2020 ◽  
Author(s):  
Jochen Schmitt ◽  
James Lee ◽  
Jon Edwards ◽  
Edward Brook ◽  
Thomas Blunier ◽  
...  

&lt;p&gt;Air inclusions trapped in polar ice provide unique records of the past atmospheric composition ranging from key greenhouse gases to short-lived trace gases like ethane and propane. Provided the analyzed species concentrations and their isotopic fingerprints accurately reflect past atmospheric composition, valuable constraints can be put onto biogeochemical cycles. However, it is already known that not all drill sites or specific time intervals are equally suitable to derive artefact-free gas records; e.g., CO&lt;sub&gt;2&lt;/sub&gt; data from Greenland ice is overprinted by CO&lt;sub&gt;2&lt;/sub&gt; &amp;#8216;in situ&amp;#8217; production due to impurities in the ice, and only the cleaner Antarctic ice allows to reconstruct past atmospheric CO&lt;sub&gt;2&lt;/sub&gt;.&lt;/p&gt;&lt;p&gt;Until recently, CH&lt;sub&gt;4&lt;/sub&gt; artefacts in polar ice were only detected on melt affected samples or for short spikes related to exceptional impurity deposition events (Rhodes et al 2013). However, careful comparison of CH&lt;sub&gt;4&lt;/sub&gt; records obtained using different extraction methods revealed disagreements among Greenland CH&lt;sub&gt;4&lt;/sub&gt; records and initiated targeted experiments.&lt;/p&gt;&lt;p&gt;Here, we report experimental findings of CH&lt;sub&gt;4&lt;/sub&gt; artefacts occurring in dust-rich sections of Greenland ice cores. The artefact production happens during the melt extraction step (&amp;#8216;in extractu&amp;#8217;) of the classic wet extraction technique and typically reaches 20 ppb in dusty stadial ice which causes erroneous reconstructions of the interhemispheric CH&lt;sub&gt;4&lt;/sub&gt; difference and strongly affects the hydrogen isotopic signature of CH&lt;sub&gt;4&lt;/sub&gt; (Lee et al. 2020). The measured CH4 excess is proportional to the amount of mineral dust in the ice. Knowing the empirical relation between produced CH4 and the dust concentration of a sample allows a first-order correction of existing CH4 data sets and to revise previous interpretations.&lt;/p&gt;&lt;p&gt;To shed light on the underlying mechanism, we analyzed samples for other short-chain alkanes ethane (C&lt;sub&gt;2&lt;/sub&gt;H&lt;sub&gt;6&lt;/sub&gt;) and propane (C&lt;sub&gt;3&lt;/sub&gt;H&lt;sub&gt;8&lt;/sub&gt;). The production of CH&lt;sub&gt;4&lt;/sub&gt; was always tightly accompanied with C&lt;sub&gt;2&lt;/sub&gt;H&lt;sub&gt;6&lt;/sub&gt; and C&lt;sub&gt;3&lt;/sub&gt;H&lt;sub&gt;8&lt;/sub&gt; production at amounts exceeding the past atmospheric background levels derived from low-dust samples. Independent of the produced amounts, CH&lt;sub&gt;4&lt;/sub&gt;, C&lt;sub&gt;2&lt;/sub&gt;H&lt;sub&gt;6&lt;/sub&gt;, and C&lt;sub&gt;3&lt;/sub&gt;H&lt;sub&gt;8&lt;/sub&gt; were produced in molar ratios of roughly 16:2:1, respectively. The simultaneous production at these ratios does not point to an anaerobic methanogenic origin which typically exhibits methane-to-ethane ratios of &gt;&gt;100. Such alkane patterns are indicative of abiotic degradation of organic matter as found in sediments.&lt;/p&gt;&lt;p&gt;We found this specific alkane pattern not only for dust-rich samples but also for samples that were affected by surface melting from the last interglacial (NEEM ice core) with low dust concentrations. This implies that the necessary precursor is an impurity also present in low-dust ice and the step leading to the production of the alkanes could then be activated when a sufficient boundary condition is met for the production, e.g. by melt/refreeze of surface snow.&lt;/p&gt;


1988 ◽  
Vol 10 ◽  
pp. 214-214
Author(s):  
J. Ocampo

The evolution of gas content from clathrated ice is very sensitive to pressure and to storage temperature. As such substances are likely to be found in deep Antarctic ice and the Greenland ice sheet (Miller 1969, Shoji and Langway 1982), the influence of clathrate formation and incomplete back-diffusion on the measured air composition was investigated.We have undertaken laboratory studies on the kinetics of formation and decomposition of clathrate hydrates of air and carbon dioxide. The kinetics were found to be controlled mainly by the self-diffusion of water molecules. The clathrate structure being of type II (Davidson and others 1984), the diffusion of guest molecules and the role of auxiliary gases was studied.A bubble-relaxation model is presented for air-hydrate inclusions in fresh ice cores. It takes into account the diffusion constant for desorption of clathrates and the mechanical relaxation of the bulk ice. The increasing pressure and the initially low bubble surface are factors which limit the rate of decomposition. The rate of decomposition was compared with the natural bubble relaxation measured in deep ice cores (Gow and Williamson 1975).Fractionation was also observed through the formation and decomposition of mixed hydrates. The diffusion control of the recrystallization process affects this fractionation.On the basis of this study we make some recommendations for the analysis of deep ice-core samples.


Sign in / Sign up

Export Citation Format

Share Document