scholarly journals Atmospheric extremes triggered the biggest calving event in more than 50 years at the Amery Ice shelf in September 2019

2020 ◽  
Author(s):  
Diana Francis ◽  
Kyle S. Mattingly ◽  
Stef Lhermitte ◽  
Marouane Temimi ◽  
Petra Heil

Abstract. Ice shelf instability is one of the main sources of uncertainty in Antarctica's contribution to future sea level rise. Calving events play crucial role in ice shelf weakening but remain unpredictable and their governing processes are still poorly understood. In this study, we analyze the unexpected September 2019 calving event from the Amery Ice Shelf, the largest since 1963 and which occurred almost a decade earlier than expected, to better understand the role of the atmosphere in calving. We find that atmospheric extremes provided a deterministic role in this event. The calving was triggered by the occurrence of a series of anomalously-deep and stationary explosive twin polar cyclones over the Cooperation and Davis Seas which generated strong offshore winds leading to increased sea ice removal, fracture amplification along the pre-existing rift, and ultimately calving of the massive iceberg. The observed record-anomalous atmospheric conditions were promoted by blocking ridges and Antarctic-wide anomalous poleward transport of heat and moisture. Blocking highs helped in (i) directing moist and warm air masses towards the ice shelf and in (ii) maintaining stationary the observed extreme cyclones at the front of the ice shelf for several days. Accumulation of cold air over the ice sheet, due to the blocking highs, led to the formation of an intense cold-high pressure over the ice sheet, which helped fuel sustained anomalously-deep cyclones via increased baroclinicity. Our results stress the importance of atmospheric extremes in ice shelf instability and the need to be accounted for when considering Antarctic ice shelf variability and contribution to sea level, especially given that more of these extremes are predicted under a warmer climate.

2016 ◽  
Vol 2 (12) ◽  
pp. e1601610 ◽  
Author(s):  
Stephen Rich Rintoul ◽  
Alessandro Silvano ◽  
Beatriz Pena-Molino ◽  
Esmee van Wijk ◽  
Mark Rosenberg ◽  
...  

Mass loss from the West Antarctic ice shelves and glaciers has been linked to basal melt by ocean heat flux. The Totten Ice Shelf in East Antarctica, which buttresses a marine-based ice sheet with a volume equivalent to at least 3.5 m of global sea-level rise, also experiences rapid basal melt, but the role of ocean forcing was not known because of a lack of observations near the ice shelf. Observations from the Totten calving front confirm that (0.22 ± 0.07) × 106m3s−1of warm water enters the cavity through a newly discovered deep channel. The ocean heat transport into the cavity is sufficient to support the large basal melt rates inferred from glaciological observations. Change in ocean heat flux is a plausible physical mechanism to explain past and projected changes in this sector of the East Antarctic Ice Sheet and its contribution to sea level.


2021 ◽  
Author(s):  
Sainan Sun ◽  
Frank Pattyn

<p>Mass loss of the Antarctic ice sheet contributes the largest uncertainty of future sea-level rise projections. Ice-sheet model predictions are limited by uncertainties in climate forcing and poor understanding of processes such as ice viscosity. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) has investigated the 'end-member' scenario, i.e., a total and sustained removal of buttressing from all Antarctic ice shelves, which can be regarded as the upper-bound physical possible, but implausible contribution of sea-level rise due to ice-shelf loss. In this study, we add successive layers of ‘realism’ to the ABUMIP scenario by considering sustained regional ice-shelf collapse and by introducing ice-shelf regrowth after collapse with the inclusion of ice-sheet and ice-shelf damage (Sun et al., 2017). Ice shelf regrowth has the ability to stabilize grounding lines, while ice shelf damage may reinforce ice loss. In combination with uncertainties from basal sliding and ice rheology, a more realistic physical upperbound to ice loss is sought. Results are compared in the light of other proposed mechanisms, such as MICI due to ice cliff collapse.</p>


2014 ◽  
Vol 8 (3) ◽  
pp. 1057-1068 ◽  
Author(s):  
Y. Gong ◽  
S. L. Cornford ◽  
A. J. Payne

Abstract. The interaction between the climate system and the large polar ice sheet regions is a key process in global environmental change. We carried out dynamic ice simulations of one of the largest drainage systems in East Antarctica: the Lambert Glacier–Amery Ice Shelf system, with an adaptive mesh ice sheet model. The ice sheet model is driven by surface accumulation and basal melt rates computed by the FESOM (Finite-Element Sea-Ice Ocean Model) ocean model and the RACMO2 (Regional Atmospheric Climate Model) and LMDZ4 (Laboratoire de Météorologie Dynamique Zoom) atmosphere models. The change of ice thickness and velocity in the ice shelf is mainly influenced by the basal melt distribution, but, although the ice shelf thins in most of the simulations, there is little grounding line retreat. We find that the Lambert Glacier grounding line can retreat as much as 40 km if there is sufficient thinning of the ice shelf south of Clemence Massif, but the ocean model does not provide sufficiently high melt rates in that region. Overall, the increased accumulation computed by the atmosphere models outweighs ice stream acceleration so that the net contribution to sea level rise is negative.


2014 ◽  
Vol 5 (2) ◽  
pp. 271-293 ◽  
Author(s):  
A. Levermann ◽  
R. Winkelmann ◽  
S. Nowicki ◽  
J. L. Fastook ◽  
K. Frieler ◽  
...  

Abstract. The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02–0.14 m; 90% range: 0.0–0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04–0.21 m; 90% range: 0.01–0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04–0.17 m; 90% range: 0.02–0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07–0.28 m; 90% range: 0.04–0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.


1979 ◽  
Vol 24 (90) ◽  
pp. 213-230 ◽  
Author(s):  
Craig S. Lingle ◽  
James A. Clark

AbstractThe Antarctic ice sheet has been reconstructed at 18000 years b.p. by Hughes and others (in press) using an ice-flow model. The volume of the portion of this reconstruction which contributed to a rise of post-glacial eustatic sea-level has been calculated and found to be (9.8±1.5) × 106 km3. This volume is equivalent to 25±4 m of eustatic sea-level rise, defined as the volume of water added to the ocean divided by ocean area. The total volume of the reconstructed Antarctic ice sheet was found to be (37±6) × 106 km3. If the results of Hughes and others are correct, Antarctica was the second largest contributor to post-glacial eustatic sea-level rise after the Laurentide ice sheet. The Farrell and Clark (1976) model for computation of the relative sea-level changes caused by changes in ice and water loading on a visco-elastic Earth has been applied to the ice-sheet reconstruction, and the results have been combined with the changes in relative sea-level caused by Northern Hemisphere deglaciation as previously calculated by Clark and others (1978). Three families of curves have been compiled, showing calculated relative sea-level change at different times near the margin of the possibly unstable West Antarctic ice sheet in the Ross Sea, Pine Island Bay, and the Weddell Sea. The curves suggest that the West Antarctic ice sheet remained grounded to the edge of the continental shelf until c. 13000 years b.p., when the rate of sea-level rise due to northern ice disintegration became sufficient to dominate emergence near the margin predicted otherwise to have been caused by shrinkage of the Antarctic ice mass. In addition, the curves suggest that falling relative sea-levels played a significant role in slowing and, perhaps, reversing retreat when grounding lines approached their present positions in the Ross and Weddell Seas. A predicted fall of relative sea-level beneath the central Ross Ice Shelf of as much as 23 m during the past 2000 years is found to be compatible with recent field evidence that the ice shelf is thickening in the south-east quadrant.


1975 ◽  
Vol 15 (73) ◽  
pp. 103-111 ◽  
Author(s):  
V. I. Morgan ◽  
W. F. Budd

AbstractSeveral seasons of aerial ice-thickness soundings over the region of the Prince Charles Mountains, the Lambert Glacier system, the Amery Ice Shelf, and their drainage basin in east Antarctica have now been completed. The measurements provide detailed maps of surface topography and ice thickness over an area of about 2 X 105 km2. The equipment used consisted of a 100 MHz echo sounder designed and constructed by Antarctic Division and carried in a Pilatus Porter aircraft. ERTS imagery provides a valuable background for portraying the echo-sounding results. These results show that an extensive, deep subglacial valley system forms the basis of the large drainage basin with concave ice surface topography which channels the ice flow into the Amery Ice Shelf. Deep glacial streams penetrate a long way into the ice-sheet basin. The rock relief is considerable, varying from 3 000 m above (present) sea-level to 2 000 m below sea-level. A very deep subglacial trench exists in the region of the confluence of the Fisher, Mellor, and Lambert Glaciers where the ice thickness reaches 2 500 m. The low surface slope and high ice velocity are suggestive of high melt production in this region. The strong echo, together with the high bedrock back-slope, suggests that the deep trench may contain a basal melt lake.


2016 ◽  
Vol 10 (6) ◽  
pp. 2623-2635 ◽  
Author(s):  
Lionel Favier ◽  
Frank Pattyn ◽  
Sophie Berger ◽  
Reinhard Drews

Abstract. The East Antarctic ice sheet is likely more stable than its West Antarctic counterpart because its bed is largely lying above sea level. However, the ice sheet in Dronning Maud Land, East Antarctica, contains marine sectors that are in contact with the ocean through overdeepened marine basins interspersed by grounded ice promontories and ice rises, pinning and stabilising the ice shelves. In this paper, we use the ice-sheet model BISICLES to investigate the effect of sub-ice-shelf melting, using a series of scenarios compliant with current values, on the ice-dynamic stability of the outlet glaciers between the Lazarev and Roi Baudouin ice shelves over the next millennium. Overall, the sub-ice-shelf melting substantially impacts the sea-level contribution. Locally, we predict a short-term rapid grounding-line retreat of the overdeepened outlet glacier Hansenbreen, which further induces the transition of the bordering ice promontories into ice rises. Furthermore, our analysis demonstrated that the onset of the marine ice-sheet retreat and subsequent promontory transition into ice rise is controlled by small pinning points, mostly uncharted in pan-Antarctic datasets. Pinning points have a twofold impact on marine ice sheets. They decrease the ice discharge by buttressing effect, and they play a crucial role in initialising marine ice sheets through data assimilation, leading to errors in ice-shelf rheology when omitted. Our results show that unpinning increases the sea-level rise by 10 %, while omitting the same pinning point in data assimilation decreases it by 10 %, but the more striking effect is in the promontory transition time, advanced by two centuries for unpinning and delayed by almost half a millennium when the pinning point is missing in data assimilation. Pinning points exert a subtle influence on ice dynamics at the kilometre scale, which calls for a better knowledge of the Antarctic margins.


2014 ◽  
Vol 8 (4) ◽  
pp. 1561-1576 ◽  
Author(s):  
S. Sun ◽  
S. L. Cornford ◽  
Y. Liu ◽  
J. C. Moore

Abstract. Accurate and extensive bedrock geometry data is essential in ice sheet modelling. The shape of the bedrock on fine scales can influence ice sheet evolution, for example through the formation of pinning points that alter grounding line dynamics. Here we test the sensitivity of the BISICLES adaptive mesh ice sheet model to small-amplitude height fluctuations on different spatial scales in the bedrock topography provided by Bedmap2 in the catchments of Pine Island Glacier, the Amery Ice shelf and a region of East Antarctica including the Aurora Basin, Law Dome and Totten Glacier. We generate an ensemble of bedrock topographies by adding random noise to the Bedmap2 data with amplitude determined by the accompanying estimates of bedrock uncertainty. We find that the small-amplitude fluctuations result in only minor changes in the way these glaciers evolve. However, lower-frequency noise, with a broad spatial scale (over tens of kilometres) is more important than higher-frequency noise even when the features have the same height amplitudes and the total noise power is maintained. This is cause for optimism regarding credible sea level rise estimates with presently achievable density of thickness measurements. Pine Island Glacier and the region around Totten Glacier and Law Dome undergo substantial retreat and appear to be more sensitive to errors in bed topography than the Amery Ice shelf region which remains stable under the present-day observational data uncertainty.


2020 ◽  
Author(s):  
Thomas Kleiner ◽  
Jeremie Schmiedel ◽  
Angelika Humbert

<p>Ice sheets constitute the largest and most uncertain potential source of future sea-level rise. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) brings together a consortium of international ice sheet and climate models to explore the contribution from the Greenland and Antarctic ice sheets to future sea-level rise.</p> <p>We use the Parallel Ice Sheet Model (PISM, pism-docs.org) to carry out spinup and projection simulations for the Antarctic Ice Sheet. Our treatment of the ice-ocean boundary condition previously based on 3D ocean temperatures (initMIP-Antarctica) has been adopted to use the ISMIP6 parameterisation and 3D ocean forcing fields (temperature and salinity) according to the ISMIP6 protocol.</p> <p>In this study, we analyse the impact of the choices made during the model initialisation procedure on the initial state. We present the AWI PISM results of the ISMIP6 projection simulations and investigate the ice sheet response for individual basins. In the analysis, we distinguish between the local and non-local ice shelf basal melt parameterisation.</p>


2020 ◽  
Author(s):  
Jim Jordan ◽  
Hilmar Gudmundsson ◽  
Adrian Jenkins ◽  
Chris Stokes ◽  
Stewart Jamieson ◽  
...  

<p>The East Antarctic Ice Sheet (EAIS) is the single largest potential contributor to future global mean sea level rise, containing a water mass equivalent of 53 m. Recent work has found the overall mass balance of the EAIS to be approximately in equilibrium, albeit with large uncertainties. However, changes in oceanic conditions have the potential to upset this balance. This could happen by both a general warming of the ocean and also by shifts in oceanic conditions allowing warmer water masses to intrude into ice shelf cavities.</p><p>We use the Úa numerical ice-flow model, combined with ocean-melt rates parameterized by the PICO box mode, to predict the future contribution to global-mean sea level of the EAIS. Results are shown for the next 100 years under a range of emission scenarios and oceanic conditions on a region by region basis, as well as for the whole of the EAIS. </p>


Sign in / Sign up

Export Citation Format

Share Document