scholarly journals A seasonal algorithm of the snow-covered area fraction for mountainous terrain

2021 ◽  
Author(s):  
Nora Helbig ◽  
Michael Schirmer ◽  
Jan Magnusson ◽  
Flavia Mäder ◽  
Alec van Herwijnen ◽  
...  

Abstract. The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is therefore an essential model parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation-ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires computing subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. For a spatiotemporal evaluation of modelled fSCA we compiled three independent fSCA data sets. Evaluating modelled 1 km fSCA seasonally with fSCA derived from airborne-acquired fine-scale HS data, satellite- as well as terrestrial camera-derived fSCA showed overall normalized root mean square errors of respectively 9 %, 20 % and 22 %, and represented seasonal trends well. The overall good model performance suggests that the seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.

2021 ◽  
Vol 15 (9) ◽  
pp. 4607-4624
Author(s):  
Nora Helbig ◽  
Michael Schirmer ◽  
Jan Magnusson ◽  
Flavia Mäder ◽  
Alec van Herwijnen ◽  
...  

Abstract. The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation, we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation–ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. To evaluate the spatiotemporal changes in modeled fSCA, we compiled three independent fSCA data sets derived from airborne-acquired fine-scale HS data and from satellite and terrestrial imagery. Overall, modeled daily 1 km fSCA values had normalized root mean square errors of 7 %, 12 % and 21 % for the three data sets, and some seasonal trends were identified. Comparing our algorithm performances to the performances of the CLM5.0 fSCA algorithm implemented in the multilayer snow cover model demonstrated that our full seasonal fSCA algorithm better represented seasonal trends. Overall, the results suggest that our seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.


1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2 of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


2009 ◽  
Vol 10 (1) ◽  
pp. 130-148 ◽  
Author(s):  
Benjamin F. Zaitchik ◽  
Matthew Rodell

Abstract Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow-covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation—SCA indicates only the presence or absence of snow, not snow water equivalent—and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to nonphysical artifacts in the local water balance. In this paper, a novel assimilation algorithm is presented that introduces Moderate Resolution Imaging Spectroradiometer (MODIS) SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm uses observations from up to 72 h ahead of the model simulation to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes during the snow season and, in some regions, on into the following spring.


2016 ◽  
Vol 17 (4) ◽  
pp. 1203-1221 ◽  
Author(s):  
Steven A. Margulis ◽  
Gonzalo Cortés ◽  
Manuela Girotto ◽  
Michael Durand

Abstract A newly developed state-of-the-art snow water equivalent (SWE) reanalysis dataset over the Sierra Nevada (United States) based on the assimilation of remotely sensed fractional snow-covered area data over the Landsat 5–8 record (1985–2015) is presented. The method (fully Bayesian), resolution (daily and 90 m), temporal extent (31 years), and accuracy provide a unique dataset for investigating snow processes. The verified dataset (based on a comparison with over 9000 station years of in situ data) exhibited mean and root-mean-square errors less than 3 and 13 cm, respectively, and correlation greater than 0.95 compared with in situ SWE observations. The reanalysis dataset was used to characterize the peak SWE climatology to provide a basic accounting of the stored snowpack water in the Sierra Nevada over the last 31 years. The pixel-wise peak SWE volume over the domain was found to be 20.0 km3 on average with a range of 4.0–40.6 km3. The ongoing drought in California contains the two lowest snowpack years (water years 2014 and 2015) and three of the four driest years over the examined record. It was found that the basin-average peak SWE, while underestimating the total water storage in snowpack over the year, accurately captures the interannual variability in stored snowpack water. However, the results showed that the assumption that 1 April SWE is representative of the peak SWE can lead to significant underestimation of basin-average peak SWE both on an average (21% across all basins) and on an interannual basis (up to 98% across all basin years).


1993 ◽  
Vol 18 ◽  
pp. 179-184
Author(s):  
Tsutomu Nakamura ◽  
Osamu Abe

The average amounts of seasonal snow cover and snowfall in Japan were calculated as 7.9 × 1013kg and 1.2 × 1014kg, respectively. The mass of seasonal snow cover of a heavy-snowfall winter, 1980–81 (56-Gosetsu), was calculated as 1.3 × 1014kg. The amount of 7.9 × 1013kg was converted to water equivalent of 230 mm on the whole snow-covered area, including snow-prone area. A mean of 370 mm in snow water equivalent was calculated for the snow area where mean snow depth on the ground was more than 10 cm.


2014 ◽  
Vol 27 (9) ◽  
pp. 3318-3330 ◽  
Author(s):  
T. Nitta ◽  
K. Yoshimura ◽  
K. Takata ◽  
R. O’ishi ◽  
T. Sueyoshi ◽  
...  

Abstract Subgrid snow cover is one of the key parameters in global land models since snow cover has large impacts on the surface energy and moisture budgets, and hence the surface temperature. In this study, the Subgrid Snow Distribution (SSNOWD) snow cover parameterization was incorporated into the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO) land surface model. SSNOWD assumes that the subgrid snow water equivalent (SWE) distribution follows a lognormal distribution function, and its parameters are physically derived from geoclimatic information. Two 29-yr global offline simulations, with and without SSNOWD, were performed while forced with the Japanese 25-yr Reanalysis (JRA-25) dataset combined with an observed precipitation dataset. The simulated spatial patterns of mean monthly snow cover fraction were compared with satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) observations. The snow cover fraction was improved by the inclusion of SSNOWD, particularly for the accumulation season and/or regions with relatively small amounts of snowfall; snow cover fraction was typically underestimated in the simulation without SSNOWD. In the Northern Hemisphere, the daily snow-covered area was validated using Interactive Multisensor Snow and Ice Mapping System (IMS) snow analysis datasets. In the simulation with SSNOWD, snow-covered area largely agreed with the IMS snow analysis and the seasonal cycle in the Northern Hemisphere was improved. This was because SSNOWD formulates the snow cover fraction differently for the accumulation season and ablation season, and represents the hysteresis of the snow cover fraction between different seasons. The effects of including SSNOWD on hydrological properties and snow mass were also examined.


1993 ◽  
Vol 18 ◽  
pp. 179-184
Author(s):  
Tsutomu Nakamura ◽  
Osamu Abe

The average amounts of seasonal snow cover and snowfall in Japan were calculated as 7.9 × 1013kg and 1.2 × 1014kg, respectively. The mass of seasonal snow cover of a heavy-snowfall winter, 1980–81 (56-Gosetsu), was calculated as 1.3 × 1014kg. The amount of 7.9 × 1013kg was converted to water equivalent of 230 mm on the whole snow-covered area, including snow-prone area. A mean of 370 mm in snow water equivalent was calculated for the snow area where mean snow depth on the ground was more than 10 cm.


2015 ◽  
Vol 16 (4) ◽  
pp. 1752-1772 ◽  
Author(s):  
Steven A. Margulis ◽  
Manuela Girotto ◽  
Gonzalo Cortés ◽  
Michael Durand

Abstract This paper presents a newly proposed data assimilation method for historical snow water equivalent SWE estimation using remotely sensed fractional snow-covered area fSCA. The newly proposed approach consists of a particle batch smoother (PBS), which is compared to a previously applied Kalman-based ensemble batch smoother (EnBS) approach. The methods were applied over the 27-yr Landsat 5 record at snow pillow and snow course in situ verification sites in the American River basin in the Sierra Nevada (United States). This basin is more densely vegetated and thus more challenging for SWE estimation than the previous applications of the EnBS. Both data assimilation methods provided significant improvement over the prior (modeling only) estimates, with both able to significantly reduce prior SWE biases. The prior RMSE values at the snow pillow and snow course sites were reduced by 68%–82% and 60%–68%, respectively, when applying the data assimilation methods. This result is encouraging for a basin like the American where the moderate to high forest cover will necessarily obscure more of the snow-covered ground surface than in previously examined, less-vegetated basins. The PBS generally outperformed the EnBS: for snow pillows the PBS RMSE was ~54% of that seen in the EnBS, while for snow courses the PBS RMSE was ~79% of the EnBS. Sensitivity tests show relative insensitivity for both the PBS and EnBS results to ensemble size and fSCA measurement error, but a higher sensitivity for the EnBS to the mean prior precipitation input, especially in the case where significant prior biases exist.


1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


Sign in / Sign up

Export Citation Format

Share Document