scholarly journals Variability and changes of Arctic sea ice draft distribution – submarine sonar measurements revisited

2011 ◽  
Vol 5 (4) ◽  
pp. 917-929 ◽  
Author(s):  
A. Oikkonen ◽  
J. Haapala

Abstract. Changes in the mean sea ice thickness and concentration in the Arctic are well known. However, quantitative information about changes in the ice thickness distribution and the composition of the pack ice is lacking. In this paper we determine the ice draft distributions, mean and modal thicknesses, and their regional and seasonal variability in the Arctic for the time period 1975–2000. We compare characteristics of the Arctic pack ice for the years 1975–1987 and 1988–2000. These periods represent different large-scale atmospheric circulation modes and sea ice circulation patterns, most evident in clearly weaker Beaufort Gyre and stronger as well as westward shifted Transpolar Drift during the later period. The comparison of these two periods reveals that the peak of sea ice draft distributions has narrowed and shifted toward thinner ice, with reductions in both mean and modal ice draft. These noticeable changes are attributed to the loss of thick, mostly deformed ice. Springtime, loss of ice volume with draft greater than 5 m exceeds 35 % in all regions except the Nansen Basin, with as much as 45 % or more at the North Pole and in the Eastern Arctic. Autumn volume reduction, mostly of deformed ice, exceeds 40 % in the Canada Basin only, but is above 30 % also in the Beaufort and Chukchi Seas. During the later period, the volume of ice category consisting thin, mostly level first-year ice, is clearly larger than during the former period, especially in the spring. In the Beaufort Sea region, changes in the composition of ice cover have resulted in a shift of modal draft from level multiyear ice draft range to values of level first-year ice. The regional and seasonal variability of sea ice draft has decreased, since the thinning has been most pronounced in regions with the thickest pack ice (the Western Arctic), and during the spring (0.6–0.8 m per decade).

2011 ◽  
Vol 5 (1) ◽  
pp. 131-167
Author(s):  
A. Oikkonen ◽  
J. Haapala

Abstract. Changes of the mean sea ice thickness and concentration in the Arctic are well known. However, comparable little is known about the ice thickness distribution and the composition of ice pack in quantity. In this paper we determine the ice thickness distributions, mean and modal thicknesses, and their regional and seasonal variability in the Arctic under different large scale atmospheric circulation modes. We compare characteristics of the Arctic ice pack during the periods 1975–1987 and 1988–2000, which have a different distribution in the AO/DA space. The study is based on submarine measurements of sea ice draft. The prevalent feature is that the peak of sea ice thickness distributions has generally taken a narrower form and shifted toward thinner ice. Also, both mean and modal ice thickness have generally decreased. These noticeable changes result from a loss of thick, mostly deformed, ice. In the spring the loss of the volume of ice thicker than 5 m exceeds 35% in all regions except the Nansen Basin, and the reduction is as much as over 45% at the North Pole and in the Eastern Arctic. In the autumn the volume of thick, mostly deformed ice has decreased by more than 40% in the Canada Basin only, but the reduction is more than 30% also in the Beaufort Sea and in the Chukchi Sea. In the Beaufort Sea region the decrease of the modal draft has been so strong that the peak has shifted from multiyear ice to first-year type ice. Also, the regional and seasonal variability of the sea ice thickness has decreased, since the thinning has been the most pronounced in the regions with the thickest pack ice (the Western Arctic), and during the spring (0.6–0.8 m per decade).


2013 ◽  
Vol 7 (1) ◽  
pp. 245-265 ◽  
Author(s):  
V. A. Alexeev ◽  
V. V. Ivanov ◽  
R. Kwok ◽  
L. H. Smedsrud

Abstract. Long-term thinning of arctic sea ice over the last few decades has resulted in significant declines in the coverage of thick multi-year ice accompanied by a proportional increase in thinner first-year ice. This change is often attributed to changes in the arctic atmosphere, both in composition and large-scale circulation, and greater inflow of warmer Pacific water through the Bering Strait. The Atlantic Water (AW) entering the Arctic through Fram Strait has often been considered less important because of strong stratification in the Arctic Ocean and the deeper location of AW compared to Pacific water. In our combined examination of oceanographic measurements and satellite observations of ice concentration and thickness, we find evidence that AW has a direct impact on the thinning of arctic sea ice downstream of Svalbard Archipelago. The affected area extends as far as Severnaya Zemlya Archipelago. The imprints of AW appear as local minima in sea ice thickness; ice thickness is significantly less than that expected of first-year ice. Our lower-end conservative estimates indicate that the recent AW warming episode could have contributed up to 150–200 km3 of sea ice melt per year, which would constitute about 20% of the total 900 km3yr−1 negative trend in sea ice volume since 2004.


2013 ◽  
Vol 54 (62) ◽  
pp. 13-18 ◽  
Author(s):  
Angelika H. H. Renner ◽  
Stefan Hendricks ◽  
Sebastian Gerland ◽  
Justin Beckers ◽  
Christian Haas ◽  
...  

AbstractThe large-scale thickness distribution of sea ice was measured during several campaigns in the European Arctic north of Svalbard from 2007 using an airborne electromagnetic induction device. In August 2010 and April-May 2011, this was complemented by extensive on-ice work including measurements of snow thickness and freeboard. Ice thicknesses show a clear difference between the seasons, with thicker ice during spring than in summer. In spring 2011, negative freeboard and flooding were observed as a result of the extensive snow cover. We find that the characteristics of the first-year sea ice allow combining observations from different years. The ice thickness in the marginal ice zone increases with increasing latitude and increasing distance to the ice edge; however, in the inner ice pack from ∼100 km from the ice edge the thickness remains almost constant. Modal ice thickness in spring reaches 2.4 m whereas in summer it is 1.0–1.4 m. Our study provides new insight into ice thickness distributions of a typical ice cover consisting of mainly first- and second-year ice, which may become the dominant ice type in the Arctic in the future.


2019 ◽  
Vol 12 (8) ◽  
pp. 3745-3758 ◽  
Author(s):  
François Massonnet ◽  
Antoine Barthélemy ◽  
Koffi Worou ◽  
Thierry Fichefet ◽  
Martin Vancoppenolle ◽  
...  

Abstract. The ice thickness distribution (ITD) is one of the core constituents of modern sea ice models. The ITD accounts for the unresolved spatial variability of sea ice thickness within each model grid cell. While there is a general consensus on the added physical realism brought by the ITD, how to discretize it remains an open question. Here, we use the ocean–sea ice general circulation model, Nucleus for European Modelling of the Ocean (NEMO) version 3.6 and Louvain-la-Neuve sea Ice Model (LIM) version 3 (NEMO3.6-LIM3), forced by atmospheric reanalyses to test how the ITD discretization (number of ice thickness categories, positions of the category boundaries) impacts the simulated mean Arctic and Antarctic sea ice states. We find that winter ice volumes in both hemispheres increase with the number of categories and attribute that increase to a net enhancement of basal ice growth rates. The range of simulated mean winter volumes in the various experiments amounts to ∼30 % and ∼10 % of the reference values (run with five categories) in the Arctic and Antarctic, respectively. This suggests that the way the ITD is discretized has a significant influence on the model mean state, all other things being equal. We also find that the existence of a thick category with lower bounds at ∼4 and ∼2 m for the Arctic and Antarctic, respectively, is a prerequisite for allowing the storage of deformed ice and therefore for fostering thermodynamic growth in thinner categories. Our analysis finally suggests that increasing the resolution of the ITD without changing the lower limit of the upper category results in small but not negligible variations of ice volume and extent. Our study proposes for the first time a bi-polar process-based explanation of the origin of mean sea ice state changes when the ITD discretization is modified. The sensitivity experiments conducted in this study, based on one model, emphasize that the choice of category positions, especially of thickest categories, has a primary influence on the simulated mean sea ice states while the number of categories and resolution have only a secondary influence. It is also found that the current default discretization of the NEMO3.6-LIM3 model is sufficient for large-scale present-day climate applications. In all cases, the role of the ITD discretization on the simulated mean sea ice state has to be appreciated relative to other influences (parameter uncertainty, forcing uncertainty, internal climate variability).


2015 ◽  
Vol 9 (1) ◽  
pp. 269-283 ◽  
Author(s):  
R. Lindsay ◽  
A. Schweiger

Abstract. Sea ice thickness is a fundamental climate state variable that provides an integrated measure of changes in the high-latitude energy balance. However, observations of mean ice thickness have been sparse in time and space, making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness, and each observational source likely has different and poorly characterized measurement and sampling errors. Observational sources used in this study include upward-looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Here we use a curve-fitting approach to determine the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems, using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month, and the primary time period analyzed is 2000–2012 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compared to the five. The trend in annual mean ice thickness over the Arctic Basin is −0.58 ± 0.07 m decade−1 over the period 2000–2012. Applying our method to the period 1975–2012 for the central Arctic Basin where we have sufficient data (the SCICEX box), we find that the annual mean ice thickness has decreased from 3.59 m in 1975 to 1.25 m in 2012, a 65% reduction. This is nearly double the 36% decline reported by an earlier study. These results provide additional direct observational evidence of substantial sea ice losses found in model analyses.


1993 ◽  
Vol 5 (1) ◽  
pp. 63-75 ◽  
Author(s):  
M. O. Jeffries ◽  
W. F. Weeks

The internal structure of ice cores from western Ross Sea pack ice floes showed considerable diversity. Snow-ice formation made a small, but significant contribution to ice growth. Frazil ice was common and its growth clearly occurred during both the pancake cycle and deformation events. Congelation ice was also common, in both its crystallographically aligned and non-aligned varieties. Platelet ice was found in only one core next to the Drygalski Ice Tongue, an observation adding to the increasing evidence that this unusual ice type occurs primarily in coastal pack ice near ice tongues and ice shelves. The diverse internal structure of the floes indicates that sea ice development in the Ross Sea is as complex as that in the Weddell Sea and more complex than in the Arctic. The mean ice thickness at the ice core sites varied between 0.71 m and 1.52 m. The thinnest ice generally occurred in the outer pack ice zone. Regardless of latitude, the ice thickness data are further evidence that Antarctic sea ice is thinner than Arctic sea ice.


Elem Sci Anth ◽  
2016 ◽  
Vol 4 ◽  
Author(s):  
Jinlun Zhang ◽  
Harry Stern ◽  
Byongjun Hwang ◽  
Axel Schweiger ◽  
Michael Steele ◽  
...  

Abstract To better simulate the seasonal evolution of sea ice in the Arctic, with particular attention to the marginal ice zone, a sea ice model of the distribution of ice thickness, floe size, and enthalpy was implemented into the Pan-arctic Ice–Ocean Modeling and Assimilation System (PIOMAS). Theories on floe size distribution (FSD) and ice thickness distribution (ITD) were coupled in order to explicitly simulate multicategory FSD and ITD distributions simultaneously. The expanded PIOMAS was then used to estimate the seasonal evolution of the Arctic FSD in 2014 when FSD observations are available for model calibration and validation. Results indicate that the simulated FSD, commonly described equivalently as cumulative floe number distribution (CFND), generally follows a power law across space and time and agrees with the CFND observations derived from TerraSAR-X satellite images. The simulated power-law exponents also correlate with those derived using MODIS images, with a low mean bias of –2%. In the marginal ice zone, the modeled CFND shows a large number of small floes in winter because of stronger winds acting on thin, weak first-year ice in the ice edge region. In mid-spring and summer, the CFND resembles an upper truncated power law, with the largest floes mostly broken into smaller ones; however, the number of small floes is lower than in winter because floes of small sizes or first-year ice are easily melted away. In the ice pack interior there are fewer floes in late fall and winter than in summer because many of the floes are “welded” together into larger floes in freezing conditions, leading to a relatively flat CFND with low power-law exponents. The simulated mean floe size averaged over all ice-covered areas shows a clear annual cycle, large in winter and smaller in summer. However, there is no obvious annual cycle of mean floe size averaged over the marginal ice zone. The incorporation of FSD into PIOMAS results in reduced ice thickness, mainly in the marginal ice zone, which improves the simulation of ice extent and yields an earlier ice retreat.


2020 ◽  
Author(s):  
Torben Koenigk ◽  
Evelien Dekker

<p>In this study, we compare the sea ice in ensembles of historical and future simulations with EC-Earth3-Veg to the sea ice of the NSIDC and OSA-SAF satellite data sets. The EC-Earth3-Veg Arctic sea ice extent generally matches well to the observational data sets, and the trend over 1980-2014 is captured correctly. Interestingly, the summer Arctic sea ice area minimum occurs already in August in the model. Mainly east of Greenland, sea ice area is overestimated. In summer, Arctic sea ice is too thick compared to PIOMAS. In March, sea ice thickness is slightly overestimated in the Central Arctic but in the Bering and Kara Seas, the ice thickness is lower than in PIOMAS.</p><p>While the general picture of Arctic sea ice looks good, EC-Earth suffers from a warm bias in the Southern Ocean. This is also reflected by a substantial underestimation of sea ice area in the Antarctic.</p><p>Different ensemble members of the future scenario projections of sea ice show a large range of the date of first year with a minimum ice area below 1 million square kilometers in the Arctic. The year varies between 2024 and 2056. Interestingly, this range does not differ very much with the emission scenario and even under the low emission scenario SSP1-1.9 summer Arctic sea ice almost totally disappears.</p>


2021 ◽  
Author(s):  
Nicholas Williams ◽  
Nicholas Byrne ◽  
Daniel Feltham ◽  
Peter Jan Van Leeuwen ◽  
Ross Bannister ◽  
...  

<div><span>A modified, standalone version of the Los Alamos Sea Ice Model (CICE) has been coupled to the Parallelized Data Assimilation Framework (PDAF) to produce a new Arctic sea ice data assimilation system CICE-PDAF, with routines for assimilating many types of recently developed sea ice observations. In this study we explore the effects of assimilating a sub-grid scale sea ice thickness distribution derived from Cryosat-2 Arctic sea ice estimates into CICE-PDAF. The true state of the sub-grid scale ice thickness distribution is not well established, and yet it plays a key role in large scale sea ice models and is vital to the dynamical and thermodynamical processes necessary to produce a good representation of the Arctic sea ice state. We examine how assimilating sub-grid scale sea ice thickness distributions can affect the evolution of the sea ice state in CICE-PDAF and better our understanding of the Arctic sea ice system.</span></div>


1997 ◽  
Vol 25 ◽  
pp. 12-16 ◽  
Author(s):  
Stephen J. Vavrus

A one-dimensional (1-D), thermodynamic sea-ice model with parameterized ice dynamics is coupled to a mixed-layer ocean model and driven with prescribed atmospheric forcings for the central Arctic. The model is used to calculate the sensitivity of the ice pack to various parameterizations that have traditionally been neglected or considered only implicitly in large-scale sea-ice models. The model includes melt ponds, leads (with summertime stratification), an ice-export term, a stability-dependent air–sea heat-exchange coefficient, a prognostic ocean–ice heat exchange, a crude ice-thickness distribution, and a sophisticated albedo parameterization.The ice pack is sensitive to the partitioning of solar energy between lateral melting and mixed-layer warming, with the most realistic simulations occurring when the heat is nearly evenly divided between these two processes. Conversely, ice thickness and coverage are fairly insensitive to the amount of lateral mixing within the upper ocean, vertical mixing within leads, and to the partitioning of mixed-layer heat content between warming the water and melting the ice bottom. The ice concentration during summer is strongly dependent on the assumed ice-thickness distribution: the amount of open water during summer is less than half the size of the empirically based distribution used here, compared with one in which ice floes are distributed uniformly across a range of thicknesses.


Sign in / Sign up

Export Citation Format

Share Document