scholarly journals Assessing spatio-temporal variability and trends (2000–2013) of modelled and measured Greenland ice sheet albedo

2014 ◽  
Vol 8 (4) ◽  
pp. 3733-3783 ◽  
Author(s):  
P. M. Alexander ◽  
M. Tedesco ◽  
X. Fettweis ◽  
R. S. W. van de Wal ◽  
C. J. P. P. Smeets ◽  
...  

Abstract. Accurate measurements and simulations of Greenland Ice Sheet (GrIS) surface albedo are essential, given the crucial role of surface albedo in modulating the amount of absorbed solar radiation and meltwater production. In this study, we assess the spatio-temporal variability of GrIS albedo (during June, July, and August) for the period 2000–2013. We use two remote sensing products derived from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), as well as outputs from the Modèle Atmosphérique Régionale (MAR) regional climate model (RCM) and data from in situ automatic weather stations. Our results point to an overall consistency in spatiotemporal variability between remote sensing and RCM albedo, but reveal a difference in mean albedo of up to ~0.08 between the two remote sensing products north of 70° N. At low elevations, albedo values simulated by the RCM are positively biased with respect to remote sensing products and in situ measurements by up to ~0.1 and exhibit low variability compared with observations. We infer that these differences are the result of a positive bias in simulated bare-ice albedo. MODIS albedo, RCM outputs and in situ observations consistently point to a~decrease in albedo of −0.03 to −0.06 per decade over the period 2003–2013 for the GrIS ablation zone (where there is a net loss of mass at the GrIS surface). Nevertheless, satellite products show a~decline in albedo of −0.03 to −0.04 per decade for regions within the accumulation zone (where there is a net gain of mass at the surface) that is not confirmed by either the model or in situ observations.

2014 ◽  
Vol 8 (6) ◽  
pp. 2293-2312 ◽  
Author(s):  
P. M. Alexander ◽  
M. Tedesco ◽  
X. Fettweis ◽  
R. S. W. van de Wal ◽  
C. J. P. P. Smeets ◽  
...  

Abstract. Accurate measurements and simulations of Greenland Ice Sheet (GrIS) surface albedo are essential, given the role of surface albedo in modulating the amount of absorbed solar radiation and meltwater production. In this study, we assess the spatio-temporal variability of GrIS albedo during June, July, and August (JJA) for the period 2000–2013. We use two remote sensing products derived from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), as well as outputs from the Modèle Atmosphérique Régionale (MAR) regional climate model (RCM) and data from in situ automatic weather stations. Our results point to an overall consistency in spatio-temporal variability between remote sensing and RCM albedo, but reveal a difference in mean albedo of up to ~0.08 between the two remote sensing products north of 70° N. At low elevations, albedo values simulated by the RCM are positively biased with respect to remote sensing products by up to ~0.1 and exhibit low variability compared with observations. We infer that these differences are the result of a positive bias in simulated bare ice albedo. MODIS albedo, RCM outputs, and in situ observations consistently indicate a decrease in albedo of −0.03 to −0.06 per decade over the period 2003–2013 for the GrIS ablation area. Nevertheless, satellite products show a decline in JJA albedo of −0.03 to −0.04 per decade for regions within the accumulation area that is not confirmed by either the model or in situ observations. These findings appear to contradict a previous study that found an agreement between in situ and MODIS trends for individual months. The results indicate a need for further evaluation of high elevation albedo trends, a reconciliation of MODIS mean albedo at high latitudes, and the importance of accurately simulating bare ice albedo in RCMs.


2021 ◽  
Author(s):  
Maurice van Tiggelen ◽  
Paul C.J.P. Smeets ◽  
Carleen H. Reijmer ◽  
Bert Wouters ◽  
Jakob F. Steiner ◽  
...  

<p>The roughness of a natural surface is an important parameter in atmospheric models, as it determines the intensity of turbulent transfer between the atmosphere and the surface. Unfortunately, this parameter is often poorly known, especially in remote areas where neither high-resolution elevation models nor eddy-covariance measurements are available.</p><p>In this study, we take advantage of the measurements of the ICESat-2 satellite laser altimeter. We use the geolocated photons product (ATL03) to retrieve a 1-m resolution surface elevation product over the K-transect (West Greenland ice sheet). In combination with a bulk drag partitioning model, the retrieved surface elevation is used to estimate the aerodynamic roughness length (z<sub>0m</sub>) of the surface.</p><p>We demonstrate the high precision of the retrieved ICESat-2 elevation using co-located UAV photogrammetry, and then evaluate the modelled aerodynamic roughness against multiple in situ eddy-covariance observations. The results point out the importance to use a bulk drag model over a more empirical formulation.</p><p>The currently available ATL03 geolocated photons are used to map the aerodynamic roughness along the K-transect (2018-2020). We find a considerable spatiotemporal variability in z<sub>0m</sub>, ranging between 10<sup>−4</sup> m for a smooth snow surface to more than 10<sup>−1</sup> m for rough crevassed areas, which confirms the need to incorporate a variable aerodynamic roughness in atmospheric models over ice sheets.</p>


1996 ◽  
Vol 42 (141) ◽  
pp. 364-374 ◽  
Author(s):  
Wouter H. Knap ◽  
Johannes Oerlemans

AbstractThe temporal and spatial variation in the surface albedo of the Greenland ice sheet during the ablation season of 1991 is investigated. The study focuses on an area east of Søndre Strømfjord measuring 200 km by 200 km and centred at 67°5′ N, 48° 13′W. The analysis is based on satellite radiance measurements carried out by the Advanced Very High Resolution Radiometer (AVHRR). The broad-band albedo is estimated from the albedos in channel 1 (visible) and channel 2 (near-infrared). The results are calibrated with the surface albedo of sea and dry snow.Satellite-derived albedos are compared with GIMEX ground measurements at three stations. There is a high degree of consistency in temporal variation at two of the three stations. Large systematic differences are attributed to albedo variations on sub-pixel scale.In the course of the ablation season four zones appear, each parallel to the ice edge. It is proposed that these are, in order of increasing altitude: (I) clean and dry ice, (II) ice with surface water, (III) superimposed ice, and (IV) snow. An extensive description of these zones is given on the basis of the situation on 25 July 1991. Zones I, III and IV reveal fairly constant albedos (0.46, 0.65 and 0.75 on average), whereas zone II is characterised by an albedo minimum (0.34). Survey of the western margin of the Greenland ice sheet (up to 71° N) shows that the zonation occurs between 66° and 70° N.


2015 ◽  
Vol 9 (3) ◽  
pp. 905-923 ◽  
Author(s):  
S. E. Moustafa ◽  
A. K. Rennermalm ◽  
L. C. Smith ◽  
M. A. Miller ◽  
J. R. Mioduszewski ◽  
...  

Abstract. Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface and, thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates, earlier snowmelt, and amplified melt–albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation area albedo and meltwater production is still relatively unknown. In this study, we analyze albedo and ablation rates using in situ and remotely sensed data. Observations include (1) a new high-quality in situ spectral albedo data set collected with an Analytical Spectral Devices Inc. spectroradiometer measuring at 325–1075 nm along a 1.25 km transect during 3 days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August 2012 and 2013. We find that seasonal ablation area albedos in 2013 have a bimodal distribution, with snow and ice facies characterizing the two peaks. Our results show that a shift from a distribution dominated by high to low albedos corresponds to an observed melt rate increase of 51.5% (between 10–14 July and 20–24 July 2013). In contrast, melt rate variability caused by albedo changes before and after this shift was much lower and varied between ~10 and 30% in the melting season. Ablation area albedos in 2012 exhibited a more complex multimodal distribution, reflecting a transition from light to dark-dominated surface, as well as sensitivity to the so called "dark-band" region in southwest Greenland. In addition to a darkening surface from ice crystal growth, our findings demonstrate that seasonal changes in GrIS ablation area albedos are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. Thus, seasonal variability in ablation area albedos appears to be regulated primarily as a function of bare ice expansion at the expense of snow, surface meltwater ponding, and melting of outcropped ice layers enriched with mineral materials, enabling dust and impurities to accumulate. As climate change continues in the Arctic region, understanding the seasonal evolution of ice sheet surface types in Greenland's ablation area is critical to improve projections of mass loss contributions to sea level rise.


1996 ◽  
Vol 42 (141) ◽  
pp. 364-374 ◽  
Author(s):  
Wouter H. Knap ◽  
Johannes Oerlemans

AbstractThe temporal and spatial variation in the surface albedo of the Greenland ice sheet during the ablation season of 1991 is investigated. The study focuses on an area east of Søndre Strømfjord measuring 200 km by 200 km and centred at 67°5′ N, 48° 13′W. The analysis is based on satellite radiance measurements carried out by the Advanced Very High Resolution Radiometer (AVHRR). The broad-band albedo is estimated from the albedos in channel 1 (visible) and channel 2 (near-infrared). The results are calibrated with the surface albedo of sea and dry snow.Satellite-derived albedos are compared with GIMEX ground measurements at three stations. There is a high degree of consistency in temporal variation at two of the three stations. Large systematic differences are attributed to albedo variations on sub-pixel scale.In the course of the ablation season four zones appear, each parallel to the ice edge. It is proposed that these are, in order of increasing altitude: (I) clean and dry ice, (II) ice with surface water, (III) superimposed ice, and (IV) snow. An extensive description of these zones is given on the basis of the situation on 25 July 1991. Zones I, III and IV reveal fairly constant albedos (0.46, 0.65 and 0.75 on average), whereas zone II is characterised by an albedo minimum (0.34). Survey of the western margin of the Greenland ice sheet (up to 71° N) shows that the zonation occurs between 66° and 70° N.


2015 ◽  
Vol 9 (2) ◽  
pp. 487-504 ◽  
Author(s):  
D. M. Chandler ◽  
J. D. Alcock ◽  
J. L. Wadham ◽  
S. L. Mackie ◽  
J. Telling

Abstract. Field and remote sensing observations in the ablation zone of the Greenland Ice Sheet have revealed a diverse range of ice surface characteristics, primarily reflecting the variable distribution of fine debris (cryoconite). This debris reduces the surface albedo and is therefore an important control on melt rates and ice sheet mass balance. Meanwhile, studies of ice sheet surface biological processes have found active microbial communities associated with the cryoconite debris, which may themselves modify the cryoconite distribution. Due to the considerable difficulties involved with collecting ground-based observations of the ice surface, our knowledge of the physical and biological surface processes, and their links, remains very limited. Here we present data collected at a field camp established in the ice sheet ablation zone at 67° N, occupied for almost the entire melt season (26 May–10 August 2012), with the aim of gaining a much more detailed understanding of the physical and biological processes occurring on the ice surface. These data sets include quadrat surveys of surface type, measurements of ice surface ablation, and in situ biological oxygen demand incubations to quantify microbial activity. In addition, albedo at the site was retrieved from AVHRR (Advanced Very High Resolution Radiometer) remote sensing data. Observations of the areal coverage of different surface types revealed a rapid change from complete snow cover to the "summer" (summer study period) ice surface of patchy debris ("dirty ice") and cryoconite holes. There was significant correlation between surface albedo, cryoconite hole coverage and surface productivity during the melt season, but microbial activity in "dirty ice" was not correlated with albedo and varied widely throughout the season. While this link suggests the potential for a remote-sensing approach to monitoring cryoconite hole biological processes, very wide seasonal and spatial variability in net surface productivity demonstrates the need for caution when extrapolating point measurements of biological processes to larger temporal or spatial scales.


Science ◽  
2013 ◽  
Vol 341 (6147) ◽  
pp. 777-779 ◽  
Author(s):  
T. Meierbachtol ◽  
J. Harper ◽  
N. Humphrey

Surface meltwater reaching the bed of the Greenland ice sheet imparts a fundamental control on basal motion. Sliding speed depends on ice/bed coupling, dictated by the configuration and pressure of the hydrologic drainage system. In situ observations in a four-site transect containing 23 boreholes drilled to Greenland’s bed reveal basal water pressures unfavorable to water-draining conduit development extending inland beneath deep ice. This finding is supported by numerical analysis based on realistic ice sheet geometry. Slow meltback of ice walls limits conduit growth, inhibiting their capacity to transport increased discharge. Key aspects of current conceptual models for Greenland basal hydrology, derived primarily from the study of mountain glaciers, appear to be limited to a portion of the ablation zone near the ice sheet margin.


1969 ◽  
Vol 35 ◽  
pp. 75-78 ◽  
Author(s):  
Charalampos Charalampidis ◽  
Dirk Van As ◽  
Peter L. Langen ◽  
Robert S. Fausto ◽  
Baptiste Vandecrux ◽  
...  

Recent record-warm summers in Greenland (Khan et al. 2015) have started affecting the higher regions of the ice sheet (i.e. the accumulation area), where increased melt has altered the properties of firn (i.e. multi-year snow). At high altitudes, meltwater percolates in the porous snow and firn, where it refreezes. The result is mass conservation, as the refrozen meltwater is essentially stored (Harper et al. 2012). However, in some regions increased meltwater refreezing in shallow firn has created thick ice layers. These ice layers act as a lid, and can inhibit meltwater percolation to greater depths, causing it to run off instead (Machguth et al. 2016). Meltwater at the surface also results in more absorbed sunlight, and hence increased melt in the accumulation area (Charalampidis et al. 2015). These relatively poorly understood processes are important for ice-sheet mass-budget projections.


2020 ◽  
Author(s):  
Baptiste Vandecrux ◽  
Ruth Mottram ◽  
Peter L. Langen ◽  
Robert S. Fausto ◽  
Martin Olesen ◽  
...  

Abstract. Perennial snow, or firn, covers 80 % of the Greenland ice sheet and has the capacity to retain part of the surface meltwater, buffering the ice sheet’s contribution to sea level. Multi-layer firn models are traditionally used to simulate the firn processes and estimate meltwater retention. We present the output from nine firn models, forced by weather-station-derived mass and energy fluxes at four sites representative of the dry snow, percolation, ice slab and firn aquifer areas. We compare the model outputs and evaluate them against in situ observations. Models that explicitly account for deep meltwater percolation overestimate percolation depth and consequently firn temperature at the percolation and ice slab sites although they accurately simulate the recharge of the firn aquifer. Models using Darcy's law and a bucket scheme compare favourably to observations at the percolation site but only the Darcy models accurately simulate firn temperature and thus meltwater percolation at the ice slab site. We find that Eulerian models, that transfer firn through fixed layers, smooth sharp gradients in firn temperature and density over time. From the model spread, we find that simulated densities (respectively temperature) have an uncertainty envelope of ±60 kg m−3 (resp. ±14 °C) in the dry snow area and up to ±280 kg m−3 (resp. ±15–18 °C) at warmer sites.


2015 ◽  
Vol 61 (228) ◽  
pp. 776-788 ◽  
Author(s):  
Irina Overeem ◽  
Benjamin Hudson ◽  
Ethan Welty ◽  
Andreas Mikkelsen ◽  
Jonathan Bamber ◽  
...  

AbstractThe Greenland ice sheet is experiencing dramatic melt that is likely to continue with rapid Arctic warming. However, the proportion of meltwater stored before reaching the global ocean remains difficult to quantify. We use NASA MODIS surface reflectance data to estimate river discharge from two West Greenland rivers – the Watson River near Kangerlussuaq and the Naujat Kuat River near Nuuk – over the summers of 2000–12. By comparison with in situ river discharge observations, ‘inundation–discharge’ relations were constructed for both rivers. MODIS-based total annual discharges agree well with total discharge estimated from in situ observations (86% of summer discharge in 2009 to 96% in 2011 at the Watson River, and 106% of total discharge in 2011 to 104% in 2012 at the Naujat Kuat River). We find, however, that a time-lapse camera, deployed at the Watson River in summer 2012, better captures the variations in observed discharge, benefiting from fewer data gaps due to clouds. The MODIS-derived estimates indicate that summer discharge has not significantly increased over the last decade, despite a strong warming trend. Also, meltwater runoff estimates derived from the regional climate model RACMO2/GR for the drainage basins are higher than our reconstructions of river discharge. These results provide indirect evidence for a considerable component of water storage within the glacio-hydrological system.


Sign in / Sign up

Export Citation Format

Share Document