scholarly journals Modeling of crack propagation in weak snowpack layers using the discrete element method

2015 ◽  
Vol 9 (1) ◽  
pp. 609-653 ◽  
Author(s):  
J. Gaume ◽  
A. van Herwijnen ◽  
G. Chambon ◽  
J. Schweizer ◽  
K. W. Birkeland

Abstract. Dry-snow slab avalanches are generally caused by a sequence of fracture processes including (1) failure initiation in a weak snow layer underlying a cohesive slab, (2) crack propagation within the weak layer and (3) tensile fracture through the slab which leads to its detachment. During the past decades, theoretical and experimental work has gradually led to a better understanding of the fracture process in snow involving the collapse of the structure in the weak layer during fracture. This now allows us to better model failure initiation and the onset of crack propagation, i.e. to estimate the critical length required for crack propagation. On the other hand, our understanding of dynamic crack propagation and fracture arrest propensity is still very limited. For instance, it is not uncommon to perform field measurements with widespread crack propagation on one day, while a few days later, with very little changes to the snowpack, crack propagation does not occur anymore. Thus far, there is no clear theoretical framework to interpret such observations, and it is not clear how and which snowpack properties affect dynamic crack propagation. To shed more light on this issue, we performed numerical propagation saw test (PST) experiments applying the discrete element (DE) method and compared the numerical results with field measurements based on particle tracking. The goal is to investigate the influence of weak layer failure and the mechanical properties of the slab on crack propagation and fracture arrest propensity. Crack propagation speeds and distances before fracture arrest were derived from the DE simulations for different snowpack configurations and mechanical properties. Then, the relation between mechanical parameters of the snowpack was taken into account so as to compare numerical and experimental results, which were in good agreement, suggesting that the simulations can reproduce crack propagation in PSTs. Finally, an in-depth analysis of the mechanical processes at play was carried out which led to suggestions for minimum column length in field PSTs.

2015 ◽  
Vol 9 (5) ◽  
pp. 1915-1932 ◽  
Author(s):  
J. Gaume ◽  
A. van Herwijnen ◽  
G. Chambon ◽  
K. W. Birkeland ◽  
J. Schweizer

Abstract. Dry-snow slab avalanches are generally caused by a sequence of fracture processes including (1) failure initiation in a weak snow layer underlying a cohesive slab, (2) crack propagation within the weak layer and (3) tensile fracture through the slab which leads to its detachment. During the past decades, theoretical and experimental work has gradually led to a better understanding of the fracture process in snow involving the collapse of the structure in the weak layer during fracture. This now allows us to better model failure initiation and the onset of crack propagation, i.e., to estimate the critical length required for crack propagation. On the other hand, our understanding of dynamic crack propagation and fracture arrest propensity is still very limited. To shed more light on this issue, we performed numerical propagation saw test (PST) experiments applying the discrete element (DE) method and compared the numerical results with field measurements based on particle tracking. The goal is to investigate the influence of weak layer failure and the mechanical properties of the slab on crack propagation and fracture arrest propensity. Crack propagation speeds and distances before fracture arrest were derived from the DE simulations for different snowpack configurations and mechanical properties. Then, in order to compare the numerical and experimental results, the slab mechanical properties (Young's modulus and strength) which are not measured in the field were derived from density. The simulations nicely reproduced the process of crack propagation observed in field PSTs. Finally, the mechanical processes at play were analyzed in depth which led to suggestions for minimum column length in field PSTs.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 498 ◽  
Author(s):  
Xuezhi Shi ◽  
Yunqian Long ◽  
Huiqiu Zhang ◽  
Liqiao Chen ◽  
Yingtang Zhou ◽  
...  

In this work, the role of long period stacking ordered (LPSO) phase in the crack propagation behavior of an as-cast Mg95.5Y3Zn1.5 alloy was investigated by dynamic four-point bent tests. The as-cast Mg95.5Y3Zn1.5 alloy is mainly composed of Mg matrix, 18R LPSO phase located at the grain boundaries and 14H LPSO phase located within the Mg matrix. The alloy exhibits excellent dynamic mechanical properties; the yield stress, maximum stress and strain to failure are 190.51 ± 3.52 MPa, 378.32 ± 4.26 MPa and 0.168 ± 0.006, respectively, at the strain rate of ~3000 s−1. The LPSO phase effectively hinders dynamic crack propagation in four typical ways, including crack tip blunting, crack opening inhibition, crack deflection and crack bridging, which are beneficial to the mechanical properties of the alloy under dynamic loadings.


2016 ◽  
Author(s):  
Jürg Schweizer ◽  
Benjamin Reuter ◽  
Alec van Herwijnen ◽  
Bettina Richter ◽  
Johan Gaume

Abstract. If a weak snow layer below a cohesive slab is present in the snow cover, unstable snow conditions can prevail for days or even weeks. We monitored the temporal evolution of a weak layer of faceted crystals as well as the overlaying slab layers at the location of an automatic weather station in the Steintälli field site above Davos (Eastern Swiss Alps). We focussed on the crack propagation propensity and performed propagation saw tests on seven sampling days during a two-month period from early January to early March 2015. Based on video images taken during the tests we determined the mechanical properties of the slab and the weak layer and compared them to the results derived from concurrently performed measurements of penetration resistance using the snow micro-penetrometer (SMP). The critical cut length, observed in PSTs, showed a distinct pattern of temporal evolution that differed from the trend of other mechanical properties suggesting that it is not possible to assess crack propagation propensity by simply monitoring some of the relevant mechanical properties. A simple sensitivity study showed the complex interplay between these properties. Traditional and newly-developed metrics of snow instability describing either the failure initiation or the crack propagation propensity, calculated from simulated snow stratigraphy (SNOWPACK) or derived from the SMP signal, did partially reproduce the observed temporal pattern. Whereas our unique dataset of quantitative measures of snow instability provides new insights into the complex slab-weak layer interaction, it also showed some deficiencies of the modelled metrics of instability – calling for an improved representation of the mechanical properties.


2016 ◽  
Vol 10 (6) ◽  
pp. 2637-2653 ◽  
Author(s):  
Jürg Schweizer ◽  
Benjamin Reuter ◽  
Alec van Herwijnen ◽  
Bettina Richter ◽  
Johan Gaume

Abstract. If a weak snow layer below a cohesive slab is present in the snow cover, unstable snow conditions can prevail for days or even weeks. We monitored the temporal evolution of a weak layer of faceted crystals as well as the overlaying slab layers at the location of an automatic weather station in the Steintälli field site above Davos (Eastern Swiss Alps). We focussed on the crack propagation propensity and performed propagation saw tests (PSTs) on 7 sampling days during a 2-month period from early January to early March 2015. Based on video images taken during the tests we determined the mechanical properties of the slab and the weak layer and compared them to the results derived from concurrently performed measurements of penetration resistance using the snow micro-penetrometer (SMP). The critical cut length, observed in PSTs, increased overall during the measurement period. The increase was not steady and the lowest values of critical cut length were observed around the middle of the measurement period. The relevant mechanical properties, the slab effective elastic modulus and the weak layer specific fracture, overall increased as well. However, the changes with time differed, suggesting that the critical cut length cannot be assessed by simply monitoring a single mechanical property such as slab load, slab modulus or weak layer specific fracture energy. Instead, crack propagation propensity is the result of a complex interplay between the mechanical properties of the slab and the weak layer. We then compared our field observations to newly developed metrics of snow instability related to either failure initiation or crack propagation propensity. The metrics were either derived from the SMP signal or calculated from simulated snow stratigraphy (SNOWPACK). They partially reproduced the observed temporal evolution of critical cut length and instability test scores. Whereas our unique dataset of quantitative measures of snow instability provides new insights into the complex slab-weak layer interaction, it also showed some deficiencies of the modelled metrics of instability – calling for an improved representation of the mechanical properties.


2015 ◽  
Vol 9 (2) ◽  
pp. 795-804 ◽  
Author(s):  
J. Gaume ◽  
G. Chambon ◽  
N. Eckert ◽  
M. Naaim ◽  
J. Schweizer

Abstract. Dry-snow slab avalanches are generally caused by a sequence of fracture processes, including failure initiation in a weak snow layer underlying a cohesive slab followed by crack propagation within the weak layer (WL) and tensile fracture through the slab. During past decades, theoretical and experimental work has gradually increased our knowledge of the fracture process in snow. However, our limited understanding of crack propagation and fracture arrest propensity prevents the evaluation of avalanche release sizes and thus impedes hazard assessment. To address this issue, slab tensile failure propensity is examined using a mechanically based statistical model of the slab–WL system based on the finite element method. This model accounts for WL heterogeneity, stress redistribution by slab elasticity and possible tensile failure of the slab. Two types of avalanche release are distinguished in the simulations: (1) full-slope release if the heterogeneity is not sufficient to stop crack propagation and trigger a tensile failure within the slab; (2) partial-slope release if fracture arrest and slab tensile failure occur due to the WL heterogeneity. The probability of these two release types is presented as a function of the characteristics of WL heterogeneity and the slab. One of the main outcomes is that, for realistic values of the parameters, the tensile failure propensity is mainly influenced by slab properties. Hard and thick snow slabs are more prone to wide-scale crack propagation and thus lead to larger avalanches (full-slope release). In this case, the avalanche size is mainly influenced by topographical and morphological features such as rocks, trees, slope curvature and the spatial variability of the snow depth as often claimed in the literature.


2021 ◽  
Author(s):  
Bastian Bergfeld ◽  
Alec van Herwijnen ◽  
Gregoire Bobillier ◽  
Jürg Schweizer

<p>For a slab avalanche to release, a weak layer buried below a cohesive snow slab is required, and the system of weak layer and slab must support crack propagation over large distances. This process, called “dynamic crack propagation”, is highly relevant for avalanche release, and computational models are nowadays able to model crack propagation over increasingly larger scales. Field measurements on dynamic crack propagation are however very scarce, although these are required to validate models. We therefore performed a series of flat field PST experiments up to ten meters long over a period of 10 weeks. During this time, PST results evolved from crack arrest to full propagation and back to crack arrest – reflecting the life cycle of the weak layer. All PST experiments were analyzed using digital image correlation to derive high-resolution displacement fields to compute dynamic crack propagation metrics, including crack length and speed as well as touchdown distance, the distance from the crack tip to the trailing point where the slab comes into contact with the substratum. Comparing the displacement fields during sawing to a mechanical model, we estimated the effective elastic modulus of slab and weak layer as well as the specific fracture energy of the weak layer. Our results show how dynamic crack propagation characteristics change over the life cycle of a weak layer and how these measures relate to snowpack properties such as load and effective elastic modulus of the slab. We found that crack speed was highest for PSTs resulting in full propagation and that the touchdown length increased with increasing elastic modulus of the slab. Our dataset provides unique insight into the dynamics of crack propagation, and provides valuable data to validate models used to study sustained crack propagation.</p>


2014 ◽  
Vol 8 (6) ◽  
pp. 6033-6057 ◽  
Author(s):  
J. Gaume ◽  
G. Chambon ◽  
N. Eckert ◽  
M. Naaim ◽  
J. Schweizer

Abstract. Dry-snow slab avalanches are generally caused by a sequence of fracture processes including failure initiation in a weak snow layer underlying a cohesive slab followed by crack propagation within the weak layer (WL) and tensile fracture through the slab. During past decades, theoretical and experimental work has gradually improved our knowledge of the fracture process in snow. However, our limited understanding of crack propagation and fracture arrest propensity prevents the evaluation of avalanche release sizes and thus impedes hazard assessment. To address this issue, slab tensile failure propensity is examined using a mechanically-based statistical model of the slab–WL system based on the finite element method. This model accounts for WL heterogeneity, stress redistribution by elasticity of the slab and the slab possible tensile failure. Two types of avalanche release are distinguished in the simulations: (1) full-slope release if the heterogeneity is not sufficient to stop crack propagation and to trigger a tensile failure within the slab, (2) partial-slope release if fracture arrest and slab tensile failure occurs due to the WL heterogeneity. The probability of these two release types is presented as a function of the characteristics of WL heterogeneity and of the slab. One of the main outcomes is that, for realistic values of the parameters, the tensile failure propensity is mainly influenced by slab properties. Hard and thick snow slabs are more prone to wide-scale crack propagation and thus lead to larger avalanches (full-slope release). In this case, the avalanche size is mainly influenced by topographical and morphological features such as rocks, trees, slope curvature and the spatial variability of the snow depth as it is often claimed in the literature.


2021 ◽  
Vol 15 (7) ◽  
pp. 3539-3553
Author(s):  
Bastian Bergfeld ◽  
Alec van Herwijnen ◽  
Benjamin Reuter ◽  
Grégoire Bobillier ◽  
Jürg Dual ◽  
...  

Abstract. Dynamic crack propagation in snow is of key importance for avalanche release. Nevertheless, it has received very little experimental attention. With the introduction of the propagation saw test (PST) in the mid-2000s, a number of studies have used particle tracking analysis of high-speed video recordings of PST experiments to study crack propagation processes in snow. However, due to methodological limitations, these studies have provided limited insight into dynamical processes such as the evolution of crack speed within a PST or the touchdown distance, i.e. the length from the crack tip to the trailing point where the slab comes to rest on the crushed weak layer. To study such dynamical effects, we recorded PST experiments using a portable high-speed camera with a horizontal resolution of 1280 pixels at rates of up to 20 000 frames s−1. We then used digital image correlation (DIC) to derive high-resolution displacement and strain fields in the slab, weak layer and substrate. The high frame rates enabled us to calculate time derivatives to obtain velocity and acceleration fields. We demonstrate the versatility and accuracy of the DIC method by showing measurements from three PST experiments, resulting in slab fracture, crack arrest and full propagation. We also present a methodology to determine relevant characteristics of crack propagation, namely the crack speed (20–30 m s−1), its temporal evolution along the column and touchdown distance (2.7 m) within a PST, and the specific fracture energy of the weak layer (0.3–1.7 J m−2). To estimate the effective elastic modulus of the slab and weak layer as well as the weak layer specific fracture energy, we used a recently proposed mechanical model. A comparison to already-established methods showed good agreement. Furthermore, our methodology provides insight into the three different propagation results found with the PST and reveals intricate dynamics that are otherwise not accessible.


2021 ◽  
Author(s):  
Grégoire Bobillier ◽  
Bastian Bergfeld ◽  
Jürg Dual ◽  
Johan Gaume ◽  
Alec Herwijnen ◽  
...  

Abstract Dry-snow slab avalanches result from the propagation of compacting shear bands in highly porous weak layers buried within a stratified and metastable snowpack. While our understanding of slab avalanche mechanisms improved with recent experimental and numerical advances, fundamental micro-mechanical processes remain poorly understood due to a lack of non-invasive monitoring techniques. Using a novel discrete micro-mechanical model, we reproduced crack propagation dynamics observed in field experiments, which employ the propagation saw test. The detailed microscopic analysis of weak layer stresses and bond breaking allowed us to define the crack tip location of closing crack faces, analyze its spatio-temporal characteristics and monitor the evolution of stress concentrations and the fracture process zone both in transient and steady-state regimes. Results highlight the occurrence of a steady state in crack speed and stress conditions for sufficiently long distances of crack propagation (> 4 m). Crack propagation without external driving shear force is possible due to the local mixed-mode shear-compression stress nature at the crack tip induced by slab bending and weak layer volumetric collapse. Our result shed light into the microscopic origin of dynamic crack propagation in snow slab avalanche release that eventually will improve the evaluation of avalanche release sizes and thus hazard management and forecasting in mountainous regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Grégoire Bobillier ◽  
Bastian Bergfeld ◽  
Jürg Dual ◽  
Johan Gaume ◽  
Alec van Herwijnen ◽  
...  

AbstractDry-snow slab avalanches result from crack propagation in a highly porous weak layer buried within a stratified and metastable snowpack. While our understanding of slab avalanche mechanisms improved with recent experimental and numerical advances, fundamental micro-mechanical processes remain poorly understood due to a lack of non-invasive monitoring techniques. Using a novel discrete micro-mechanical model, we reproduced crack propagation dynamics observed in field experiments, which employ the propagation saw test. The detailed microscopic analysis of weak layer stresses and bond breaking allowed us to define the crack tip location of closing crack faces, analyze its spatio-temporal characteristics and monitor the evolution of stress concentrations and the fracture process zone both in transient and steady-state regimes. Results highlight the occurrence of a steady state in crack speed and stress conditions for sufficiently long crack propagation distances (> 4 m). Crack propagation without external driving force except gravity is possible due to the local mixed-mode shear-compression stress nature at the crack tip induced by slab bending and weak layer volumetric collapse. Our result shed light into the microscopic origin of dynamic crack propagation in snow slab avalanche release that eventually will improve the evaluation of avalanche release sizes and thus hazard management and forecasting in mountainous regions.


Sign in / Sign up

Export Citation Format

Share Document