scholarly journals Multi-day hail clusters and isolated hail days in Switzerland – large-scale flow conditions and precursors

2021 ◽  
Vol 2 (4) ◽  
pp. 1167-1185
Author(s):  
Hélène Barras ◽  
Olivia Martius ◽  
Luca Nisi ◽  
Katharina Schroeer ◽  
Alessandro Hering ◽  
...  

Abstract. In Switzerland, hail regularly occurs in multi-day hail clusters. The atmospheric conditions prior to and during multi-day hail clusters are described and contrasted to the conditions prior to and during isolated hail days. The analysis focuses on hail days that occurred between April and September 2002–2019 within 140 km of the Swiss radar network. Hail days north and south of the Alps are defined using a minimum area threshold of a radar-based hail product. Multi-day clusters are defined as 5 d windows containing 4 or 5 hail days and isolated hail days as 5 d windows containing a single hail day. The reanalysis ERA-5 is used to study the large-scale flow in combination with objectively identified cold fronts, atmospheric blocking events, and a weather type classification. Both north and south of the Alps, isolated hail days have frequency maxima in May and August–September, whereas clustered hail days occur mostly in July and August. Composites of atmospheric variables indicate a more stationary and meridionally amplified atmospheric flow both north and south of the Alps during multi-day hail clusters. On clustered hail days north of the Alps, blocks are more frequent over the North Sea, and surface fronts are located farther from Switzerland than on isolated hail days. Clustered hail days north of the Alps are also characterized by significantly higher most unstable convective available potential energy (MUCAPE) values, warmer daily maximum surface temperatures, and higher atmospheric moisture content than isolated hail days. Hence, both stationary flow conditions and anomalous amounts of moisture are necessary for multi-day hail clusters on the north side. In contrast, differences in MUCAPE on the south side between clustered hail days and isolated hail days are small. The mean sea level pressure south of the Alps is significantly deeper, the maximum temperature is colder, and local moisture is significantly lower on isolated hail days. Both north and south of the Alps, the upper-level atmospheric flow over the eastern Atlantic is meridionally more amplified 3 d prior to clustered hail days than prior to isolated days. Moreover, blocking occurs prior to more than 10 % of clustered hail days over Scandinavia, but no blocks occur prior to isolated hail days. Half of the clustered hail days south of the Alps are also clustered north of the Alps. On hail days clustering only south of the Alps, fronts are more frequently located on the Alpine ridge, and local low-level winds are stronger. The temporal clustering of hail days is coupled to specific synoptic- and local-scale flow conditions; this information may be exploited for short- to medium-range forecasts of hail in Switzerland.

2021 ◽  
Author(s):  
Hélène Barras ◽  
Olivia Martius ◽  
Luca Nisi ◽  
Katharina Schroeer ◽  
Alessandro Hering ◽  
...  

Abstract. In Switzerland, hail regularly occurs in multi-day hail clusters. The atmospheric conditions prior to and during multi-day hail clusters are described and contrasted to the conditions prior to and during isolated hail days. The analysis focuses on hail days that occurred between April and September 2002–2019 within 140 km of the Swiss radar network. Hail days north and south of the Alps are defined using a minimum area threshold of a radar-based hail product. Multi-day clusters are defined as 5-day windows containing 4 or 5 hail days and isolated hail days as 5-day windows containing a single hail day. The reanalysis ERA-5 is used to study the large-scale flow in combination with objectively identified cold fronts, atmospheric blocking events, and a weather type classification. Both north and south of the Alps, isolated hail days have frequency maxima in May and August-September whereas clustered hail days occur mostly in July and August. Composites of atmospheric variables indicate a more stationary and meridionally amplified atmospheric flow both north and south of the Alps during multi-day hail clusters. On clustered hail days north of the Alps, blocks are more frequent over the North Sea, and surface fronts are located farther from Switzerland than on isolated hail days. Clustered hail days north of the Alps are also characterized by significantly higher convective available potential energy (CAPE) values, warmer daily maximum surface temperatures, and higher atmospheric moisture content than isolated hail days. Hence, both stationary flow conditions and anomalous amounts of moisture are necessary for multi-day hail clusters on the north side. In contrast, differences in CAPE on the south side between clustered hail days and isolated hail days are small. The mean sea level pressure south of the Alps is significantly deeper, the maximum temperature is colder, and local moisture is significantly lower on isolated hail days. Both north and south of the Alps, the upper-level atmospheric flow over the eastern Atlantic is meridionally more amplified three days prior to clustered hail days than prior to isolated days. Moreover, Moreover blocking occurs prior to more than 10 % of clustered hail days over Scandinavia, but no blocks occur prior to isolated hail days. Half of the clustered hail days south of the Alps are also clustered north of the Alps. On hail days clustering only south of the Alps, fronts are more frequently located on the Alpine ridge, and local low- level winds are stronger. The temporal clustering of hail days is coupled to specific synoptic- and local- scale flow conditions, this information may be exploited for short to medium-range forecasts of hail in Switzerland.


1976 ◽  
Vol 78 (1) ◽  
pp. 129-154 ◽  
Author(s):  
Francis P. Bretherton ◽  
Dale B. Haidvogel

In a turbulent two-dimensional flow enstrophy systematically cascades to very small scales, at which it is dissipated. The kinetic energy, on the other hand, remains at large scales and the total kinetic energy is constant. Above random topography an initially turbulent flow tends to a steady state with streamlines parallel to contours of constant depth, anticyclonic around a bump. A numerical experiment verifies this prediction. In a closed basin on a beta-plane the solution with minimum enstrophy implies a westward flow in the interior, returning in narrow boundary layers to the north and south. This result is interpreted using a parameterization of the effects of the eddies on the large-scale flow. The numerical solution is in qualitative agreement, but corresponds to a minimum of a more complex measure of the total enstrophy than the usual quadratic integral.


2008 ◽  
Vol 65 (10) ◽  
pp. 3159-3178 ◽  
Author(s):  
Gwendal Rivière

Barotropic dynamics of upper-tropospheric midlatitude disturbances evolving in different configurations of the zonal weather regime (i.e., in different zonal-like large-scale flows) were studied using observational analyses and barotropic model experiments. The contraction stage of upper-level disturbances that follows their elongation stage leads to an increase of eddy kinetic energy that is called the barotropic regeneration process in this text. This barotropic mechanism is studied through notions of barotropic critical regions (BtCRs) and effective deformation that have been introduced in a previous paper. The effective deformation field is equal to the difference between the square of the large-scale deformation magnitude and the square of the large-scale vorticity. Regions where the effective deformation is positive correspond to regions where the large-scale flow tends to strongly stretch synoptic disturbances. A BtCR is an area separating two large-scale regions of positive effective deformation, one located upstream and on the south side of the jet and the other downstream and on the north side. Such a region presents a discontinuity in the orientation of the dilatation axes and is a potential area where the barotropic regeneration process may occur. Winter days presenting a zonal weather regime in the 40-yr ECMWF Re-Analysis dataset are decomposed, via a partitioning algorithm, into different configurations of the effective deformation field at 300 hPa. A six-cluster partition is obtained. Composite maps of the barotropic generation rate for each cluster exhibit a succession of negative and positive values on both sides of the BtCRs. It confirms statistically that the barotropic regeneration mechanism occurs preferentially about BtCRs. Numerical experiments using a forced barotropic model on the sphere are performed. Each experiment consists of adding a synoptic-scale perturbation to one of the zonal-like jet configurations found in observations, which is kept fixed with time. The combined effects of the effective deformation and nonlinearities are shown to be crucial to reproduce the barotropic regeneration process about BtCRs.


2018 ◽  
Vol 31 (6) ◽  
pp. 2511-2532 ◽  
Author(s):  
Clio Michel ◽  
Annick Terpstra ◽  
Thomas Spengler

Polar mesoscale cyclones (PMCs) are automatically detected and tracked over the Nordic seas using the Melbourne University algorithm applied to ERA-Interim. The novelty of this study lies in the length of the dataset (1979–2014), using PMC tracks to infer relationships to large-scale flow patterns, and elucidating the sensitivity to different selection criteria when defining PMCs and polar lows and their genesis environments. The angle between the ambient mean and thermal wind is used to distinguish two different PMC genesis environments. The forward shear environment (thermal and mean wind have the same direction) features typical baroclinic conditions with a temperature gradient at the surface and a strong jet stream at the tropopause. The reverse shear environment (thermal and mean wind have opposite directions) features an occluded cyclone with a barotropic structure throughout the entire troposphere and a low-level jet. In contrast to previous studies, PMC occurrence features neither a significant trend nor a significant link with the North Atlantic Oscillation and the Scandinavian blocking (SB), though the SB negative pattern seems to promote reverse shear PMC genesis. The sea ice extent in the Nordic seas is not associated with overall changes in PMC occurrence but influences the genesis location. Selected cold air outbreak indices and the temperature difference between the sea surface and 500 hPa (SST − T500) show no robust link with PMC occurrence, but the characteristics of forward shear PMCs and their synoptic environments are sensitive to the choice of the SST − T500 threshold.


2012 ◽  
Vol 140 (9) ◽  
pp. 2967-2981 ◽  
Author(s):  
Andrea Schneidereit ◽  
Silke Schubert ◽  
Pavel Vargin ◽  
Frank Lunkeit ◽  
Xiuhua Zhu ◽  
...  

Abstract Several studies show that the anomalous long-lasting Russian heat wave during the summer of 2010, linked to a long-persistent blocking high, appears mainly as a result of natural atmospheric variability. This study analyzes the large-scale flow structure based on the ECMWF Re-Analysis Interim (ERA-Interim) data (1989–2010). The anomalous long-lasting blocking high over western Russia including the heat wave occurs as an overlay of a set of anticyclonic contributions on different time scales. (i) A regime change in ENSO toward La Niña modulates the quasi-stationary wave structure in the boreal summer hemisphere supporting the eastern European blocking. The polar Arctic dipole mode is enhanced and shows a projection on the mean blocking high. (ii) Together with the quasi-stationary wave anomaly, the transient eddies maintain the long-lasting blocking. (iii) Three different pathways of wave action are identified on the intermediate time scale (~10–60 days). One pathway commences over the eastern North Pacific and includes the polar Arctic region; another one runs more southward and crossing the North Atlantic, continues to eastern Europe; a third pathway southeast of the blocking high describes the downstream development over South Asia.


1988 ◽  
Vol 130 ◽  
pp. 543-543
Author(s):  
David J. Batuski ◽  
Jack O. Burns ◽  
Adrian Melott

In a continuing redshift observation program, we have recently determined or confirmed the redshifts of 32 R ≥ 0 Abell clusters. With these data added to the previously measured cluster redshifts, there is now a sample of Abell clusters to z = 0.085 that is 92% complete in redshift measurements. The sample consists of 225 clusters in the North and South Galactic Caps, with latitude |b| > 30° to minimize obscuration effects. The longitude range 270° < l < 360° was also excluded for this sample because of an apparent large spur of galactic absorption.


2003 ◽  
Vol 30 (4) ◽  
Author(s):  
Gabriel G. Katul ◽  
Claudia Angelini ◽  
Daniela De Canditiis ◽  
Umberto Amato ◽  
Brani Vidakovic ◽  
...  

2020 ◽  
Author(s):  
David Sexton ◽  
Jason Lowe ◽  
James Murphy ◽  
Glen Harris ◽  
Elizabeth Kendon ◽  
...  

&lt;p&gt;UK Climate Projections 2018 (UKCP18) included land and marine projections and were published in 2018 to replace UKCP09. The land projections had three components, and all were designed to provide more information on future weather compared to UKCP09. The first component updated the UKCP09 probabilistic projections by including newer CMIP5 data and focussing on seasonal means from individual years rather than 30-year averages. The probabilistic projections represent the wider uncertainty. The second two components (global and regional projections) both had the aim of providing plausible examples of future climate, but at different resolutions.&lt;/p&gt;&lt;p&gt;The global projections were a combination of 13 CMIP5 models and a 15-member perturbed parameter ensemble (PPE) of coupled simulations for 1900-2100 using CMIP5 RCP8.5 from 2005 onwards. The PPE was provided at 60km atmosphere, quarter degree ocean and the large-scale conditions from twelve of the members were used to drive the regional model at both 12km and 2.2km resolution. These plausible examples are more useful for providing information about weather in a future climate to support a storyline approach for decision making.&lt;/p&gt;&lt;p&gt;The talk will present examples of new ways to use UKCP18 compared to UKCP09.&amp;#160; We will show how the global projections can be used to understand that the recent record winter daily maximum temperature in the UK in 2019 had a large contribution from internal variability and what this means for breaking the record in a warming climate. We also use an example from China to demonstrate one way to exploit information at different time scales, looking at how a circulation index, which is predictable and related to tropical cyclone landfall, changes in a future climate.&lt;/p&gt;&lt;p&gt;Finally, we show that while the enhanced resolution of the global and regional projections has improved our capability to provide climate information linked to the better representation of circulation, they lack diversity in some of the key drivers of future climate. Therefore, a key way forward will be to find an appropriate balance between the need for better diversity (e.g. multiple ensembles such as CMIP or PPEs) and the need for an appropriate resolution to retain this new capability.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document