blocking high
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 19)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 35 (6) ◽  
pp. 1091-1103
Author(s):  
Jinhuan Zhu ◽  
Libo Zhou ◽  
Han Zou ◽  
Peng Li ◽  
Fei Li ◽  
...  

2021 ◽  
Vol 2 (4) ◽  
pp. 927-952
Author(s):  
Carola Detring ◽  
Annette Müller ◽  
Lisa Schielicke ◽  
Peter Névir ◽  
Henning W. Rust

Abstract. Stationary, long-lasting blocked weather patterns can lead to extreme conditions such as anomalously high temperatures or heavy rainfall. The exact locations of such extremes depend on the location of the vortices that form the block. There are two main types of blocking: (i) a high-over-low block with a high located poleward of an isolated low and (ii) an omega block with two lows that lie southeast and southwest of the blocking high in the Northern Hemisphere. In this work, we refine a novel method based on the kinematic vorticity number and the point vortex theory that allows us to distinguish between these two blocking types. Based on the National Centers for Environmental Prediction–Department of Energy (NCEP–DOE) Reanalysis 2 data, we study the trends of the occurrence probability and the onset (formation), decay (offset) and transition probabilities of high-over-low and omega blocking in the 30-year period from 1990 to 2019 in the Northern Hemisphere (90∘ W–90∘ E) and in the Euro-Atlantic sector (40∘ W–30∘ E). First, we use logistic regression to investigate long-term changes in blocking probabilities for full years, seasons and months. While trends are small for annual values, changes in occurrence probability are more visible and also more diverse when broken down to seasonal and monthly resolution, showing a prominent increase in February and March and a decrease in December. A three-state multinomial regression describing the occurrence of omega and high-over-low blocking reveals different trends for both types. Particularly the February and December changes are dominated by the omega blocking type. Additionally, we use Markov models to describe transition probabilities for a two-state (unblocked, blocked) and a three-state (unblocked, omega block, high-over-low block) Markov model. We find the largest changes in transition probabilities in the summer season, where the transition probabilities towards omega blocks significantly increase, while the unblocked state becomes less probable. Prominent in winter are decreasing probabilities for transitions from omega to high-over-low and persistence of the latter. Moreover, we show that omega blocking is more likely to occur and to be more persistent than the high-over-low blocking pattern.


2021 ◽  
Vol 21 (5) ◽  
pp. 1583-1597
Author(s):  
Uri Dayan ◽  
Itamar M. Lensky ◽  
Baruch Ziv ◽  
Pavel Khain

Abstract. The study deals with an intense rainstorm that hit the Middle East between 24 and 27 April 2018 and took the lives of 13 people, 10 of them on 26 April during the deadliest flash flood in Tzafit Basin (31.0∘ N, 35.3∘ E), the Negev Desert. The rainfall observed in the southern Negev was comparable to the long-term annual rainfall there, with intensities exceeding a 75-year return period. The timing of the storm, at the end of the rainy season when rain is relatively rare and spotty, raises the question of what the atmospheric conditions were that made this rainstorm one of the most severe late-spring storms. The synoptic background was an upper-level cut-off low that formed south of a blocking high which developed over eastern Europe. The cut-off low entered the Levant near 30∘ N latitude, slowed its movement from ∼10 to <5 m s−1 and so extended the duration of the storm over the region. The dynamic potential of the cut-off low, as estimated by its curvature vorticity, was the largest among the 12 late-spring rainstorms that occurred during the last 33 years. The lower levels were dominated by a cyclone centred over north-western Saudi Arabia, producing north-westerly winds that advected moist air from the Mediterranean inland. During the approach of the storm, the atmosphere over Israel became unstable, with instability indices reaching values favourable for thunderstorms (e.g. CAPE>1500 J kg−1, LI=4 K) and the precipitable water reaching 30 mm. The latter is explained by lower-level moisture advection from the Mediterranean and an additional contribution of mid-level moist air transport entering the region from the east. Three major rain centres were active over Israel during 26 April, only one of them was orographic and the other two were triggered by instability and mesoscale cyclonic centres. The build-up of the instability is explained by a negative upper-level temperature anomaly over the region caused by a northerly flow east of a blocking high that dominated eastern Europe and ground warming during several hours under clear skies. The intensity of this storm is attributed to an amplification of a mid-latitude disturbance which produced a cut-off low with its implied high relative vorticity, low upper-level temperatures and slow progression. All these, combined with the contribution of moisture supply, led to intense moist convection that prevailed over the region for 3 successive days.


2021 ◽  
Author(s):  
Jamyle Magalhães ◽  
Ana Cristina Pinto de Almeida Palmeira

&lt;p&gt;Atmospheric circulation in mid-latitudes is characterized by a westerlies zonal flow. On blocking conditions, this flow is interrupted by a large almost-stationary anticyclone. This situation, there is a splitting of the jet stream, what modify zonal flow pattern and change the normal eastward displacement of transients. There are two blocking types frequently observed in South Hemisphere (SH): dipole type blocking &amp;#8211; occurs when a cut-off low is located north of the anticyclone, which characterize a dipole; omega type blocking &amp;#8211; occurs when there is an arrangement of two cut-off lows and the blocking high like Greek letter &amp;#937; (omega, inverted in SH). First, the subjective methods were created to identify these systems, later, aiming at numerical modeling, the objective methods, called zonal index, were created. Thus, the purpose of this study was to identify, through subjective and objective methods, a blocking system that occurred over South Pacific, on the west coast of South America, from August 31 to September 05, 2019. In this study, surface synoptic chart from Navy Hydrography Center (NHC) and images from Geostationary Operational Environmental Satellite (GOES-16) in channel 13 (infrared) were used. In addition, data from Era5 reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF), with a horizontal resolution of 0.25&amp;#176;, were used to elaborate meteorological fields and zonal index calculation. The identification criteria proposed by Casarin and Kousky (1982) were used for subjective analysis, and the Leje&amp;#241;as (1984) for objective one. The analyzed fields indicate that the system had persisted for six days. In this period, the flow was split, the blocking high didn&amp;#8217;t move more 25&amp;#186; of longitude and the zonal index remained negative, what satisfied all criteria used. Therefore, this event was characterized as atmospheric blocking of dipole kind.&lt;/p&gt;


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hye-Jin Kim ◽  
Seok-Woo Son ◽  
Woosok Moon ◽  
Jong-Seong Kug ◽  
Jaeyoung Hwang

AbstractThe subseasonal relationship between Arctic and Eurasian surface air temperature (SAT) is re-examined using reanalysis data. Consistent with previous studies, a significant negative correlation is observed in cold season from November to February, but with a local minimum in late December. This relationship is dominated not only by the warm Arctic-cold Eurasia (WACE) pattern, which becomes more frequent during the last two decades, but also by the cold Arctic-warm Eurasia (CAWE) pattern. The budget analyses reveal that both WACE and CAWE patterns are primarily driven by the temperature advection associated with sea level pressure anomaly over the Ural region, partly cancelled by the diabatic heating. It is further found that, although the anticyclonic anomaly of WACE pattern mostly represents the Ural blocking, about 20% of WACE cases are associated with non-blocking high pressure systems. This result indicates that the Ural blocking is not a necessary condition for the WACE pattern, highlighting the importance of transient weather systems in the subseasonal Arctic-Eurasian SAT co-variability.


Author(s):  
Jinbao Zhang ◽  
Yichuan Ding ◽  
Guochen Jiang ◽  
Austin C. Flick ◽  
Ziyi Pan ◽  
...  

Open-air, low temperature ultrasonic spray coating of SnO2/SnOx is demonstrated to fabricate large area PSCs and modules. The optimized SnO2/SnOx nanocomposite exhibits significantly enhanced hole-blocking, high efficiencies, as well as good shelf-life stability.


2020 ◽  
pp. 1-49
Author(s):  
Donghyuck Yoon ◽  
Dong-Hyun Cha ◽  
Myong-In Lee ◽  
Ki-Hong Min ◽  
Sang-Yoon Jun ◽  
...  

AbstractSouth Korea’s heat wave events over 39 years (1980–2018) were defined by spatiotemporal criteria, and their quantitative characteristics were analyzed. The duration and intensity of these events ranked the highest in 2016 and 2018. An examination of synoptic conditions of heat wave events in 2016 and 2018 based on a reanalysis dataset revealed a positive anomaly of 500-hPa geopotential height, which could have induced warm conditions over the Korean Peninsula in both years. However, a difference prevailed in that there was a blocking high over the Kamchatka Peninsula and a continental thermal high over northern China in 2016, while the expansion of the western North Pacific subtropical-high was mainly associated with 2018 heat wave events. Numerical experiments using the Weather Research and Forecasting model (WRF) were conducted to (1) evaluate how distinct meteorological characteristics of heat wave events in 2016 and 2018 were reproduced by the model, and (2) investigate how they affect extreme temperature events. Typical synoptic features of the 2016 heat wave events (i.e., Kamchatka blocking and continental thermal high) were not captured well by the WRF model, while those of 2018 were reasonably reproduced. On the contrary, the heat wave event during late-August 2016 related to the Kamchatka blocking high was realistically simulated when the blocking was artificially persisted by applying the spectral nudging. In conclusion, the existence of a blocking high over the Kamchatka region (i.e., northern Pacific region) is an important feature to accurately predict long-lasted heat waves in East Asia.


2020 ◽  
Vol 6 (50) ◽  
pp. eaba4844
Author(s):  
Brice R. Rea ◽  
Ramón Pellitero ◽  
Matteo Spagnolo ◽  
Philip Hughes ◽  
Susan Ivy-Ochs ◽  
...  

The Younger Dryas (YD) was a period of rapid climate cooling that occurred at the end of the last glaciation. Here, we present the first palaeoglacier-derived reconstruction of YD precipitation across Europe, determined from 122 reconstructed glaciers and proxy atmospheric temperatures. Positive precipitation anomalies (YD versus modern) are found along much of the western seaboard of Europe and across the Mediterranean. Negative precipitation anomalies occur over the Fennoscandian ice sheet, the North European Plain, and as far south as the Alps. This is consistent with a more southerly and zonal storm track, which is linked to a concomitant southern location of the Polar Frontal Jet Stream, generating cold air outbreaks and enhanced cyclogenesis, especially over the eastern Mediterranean. This atmospheric configuration resembles the modern Scandinavian (SCAND) circulation over Europe (a blocking high pressure over Scandinavia pushing storm tracks south and east), and by analogy, a seasonally varying palaeoprecipitation pattern is interpreted.


Author(s):  
S.J. Rzayeva ◽  

A method for isolating water inflows into the well by blocking high permeability zones with a gel-forming composition based on sodium silicate, including biologically active additives has been developed. Whey is used as a biologically active supplement. As a result of isolation of the watering intervals by the gel-forming composition, low-permeability oil-saturated areas are involved in the development. The gelation process can be adjusted depending on the concentrations of sodium silicate and whey, as well as the temperature at a certain depth of the reservoir, necessary for isolation. In order to prevent a premature coagulation process when the formation is saturated with hard formation water, fresh or softened water is pumped in front of the gel-forming composition. This technology is used to reach the residual resistance factor to the value 3.88, an increase in oil production will be 18.5%.


Author(s):  
Onur Aydin ◽  
Bashar Emon ◽  
M. Taher A. Saif

AbstractRespiratory infections may spread through droplets, airborne particles, and aerosols from infected individuals through coughing, sneezing, and speaking. In the case of Coronavirus Disease 2019 (COVID-19), droplet spread can occur from symptomatic as well as pre-symptomatic and asymptomatic persons. The U.S. Centers for Disease Control and Prevention (CDC) has therefore recently recommended home-made cloth face coverings for use by the general public in areas of significant community-based transmission. Because medical masks and N95 respirators are in short supply, these are to be reserved for healthcare workers. There is, however, little information on the effectiveness of home-made face coverings in reducing droplet dissemination. Here, we ascertained the performance of ten different fabrics, ranging from cotton to silk, in blocking high velocity droplets, using a 3-layered commercial medical mask as a benchmark material. We also assessed their breathability and ability to soak water. We reason that the materials should be as breathable as possible, without compromising blocking efficiency, to reduce air flow through the sides of the mask since such flow would defeat the purpose of the mask. We found that most home fabrics substantially block droplets, even as a single layer. With two layers, blocking performance can reach that of surgical mask without significantly compromising breathability. Furthermore, we observed that home fabrics are hydrophilic to varying degrees, and hence soak water. In contrast, medical masks are hydrophobic, and tend to repel water. Incoming droplets are thus soaked and “held back” by home fabrics, which might offer an as of yet untapped and understudied advantage of home-made cloth masks. Overall, our study suggests that most double-layered cloth face coverings may help reduce droplet transmission of respiratory infections.


Sign in / Sign up

Export Citation Format

Share Document