scholarly journals Supplementary material to "The Role of Eddy-Eddy Interactions in Sudden Stratospheric Warming Formation"

Author(s):  
Erik Anders Lindgren ◽  
Aditi Sheshadri
2020 ◽  
Vol 33 (2) ◽  
pp. 527-545 ◽  
Author(s):  
Zhuozhuo Lü ◽  
Fei Li ◽  
Yvan J. Orsolini ◽  
Yongqi Gao ◽  
Shengping He

AbstractIt is unclear whether the Eurasian snow plays a role in the tropospheric driving of sudden stratospheric warming (SSW). The major SSW event of February 2018 is analyzed using reanalysis datasets. Characterized by predominant planetary waves of zonal wave 2, the SSW developed into a vortex split via wave–mean flow interaction. In the following two weeks, the downward migration of zonal-mean zonal wind anomalies was accompanied by a significant transition to the negative phase of the North Atlantic Oscillation, leading to extensive cold extremes across Europe. Here, we demonstrate that anomalous Siberian snow accumulation could have played an important role in the 2018 SSW occurrence. In the 2017/18 winter, snow depths over Siberia were much higher than normal. A lead–lag correlation analysis shows that the positive fluctuating snow depth anomalies, leading to intensified “cold domes” over eastern Siberia (i.e., in a region where the climatological upward planetary waves maximize), precede enhanced wave-2 pulses of meridional heat fluxes (100 hPa) by 7–8 days. The snow–SSW linkage over 2003–19 is further investigated, and some common traits among three split events are found. These include a time lag of about one week between the maximum anomalies of snow depth and wave-2 pulses (100 hPa), high sea level pressure favored by anomalous snowpack, and a ridge anchoring over Siberia as precursor of the splits. The role of tropospheric ridges over Alaska and the Urals in the wave-2 enhancement and the role of Arctic sea ice loss in Siberian snow accumulation are also discussed.


2020 ◽  
Author(s):  
Daniela I. V. Domeisen ◽  
Christian M. Grams ◽  
Lukas Papritz

Abstract. Sudden stratospheric warming (SSW) events can significantly impact tropospheric weather for a period of several weeks, in particular over the North Atlantic and Europe. However, not all SSW events exhibit the same tropospheric response, if any, and it remains an open question what determines the existence, location, timing, and strength of the downward impact. We here explore the role of the state of the tropospheric flow in the North Atlantic region at the onset of SSW events for determining the subsequent surface impact. A refined definition of seven North Atlantic tropospheric weather regimes indicates the Greenland blocking (GL) and Atlantic Trough (AT) regimes as the most frequent large-scale patterns following the weeks after an SSW. While GL is dominated by high pressure over Greenland, AT is dominated by a southeastward shifted storm track in the North Atlantic. We find that a blocking situation over western Europe and the North Sea (European Blocking) at the time of the SSW onset favours the GL response and the associated cold conditions over Europe. In contrast, an AT response and mild conditions are more likely if GL occurs already at SSW onset. For the remaining tropospheric flow regimes during SSW onset, we find no clear response. The results indicate that the tropospheric impact of SSW events critically depends on the tropospheric state during the onset of the SSW, which could provide crucial guidance for subseasonal prediction.


2020 ◽  
Vol 77 (10) ◽  
pp. 3321-3342
Author(s):  
Byeong-Gwon Song ◽  
Hye-Yeong Chun ◽  
In-Sun Song

AbstractThe role of gravity waves (GWs) in a sudden stratospheric warming (SSW) event that occurred in January 2009 (SSW09) is investigated using the MERRA-2 dataset. Nearly 2 weeks prior to the central date (lag = 0), at which the zonal-mean zonal wind at 10 hPa and 60°N first becomes negative, westward GW drag (GWD) is significantly enhanced in the lower mesosphere and stratosphere. At 5 days before lag = 0, planetary waves (PWs) of zonal wavenumber 2 (ZWN-2) in the stratosphere are enhanced, while PWs of ZWN-1 are weakened, which are evident from the amplitudes of the PWs and their Eliassen–Palm flux divergence (EPD). To examine the relationship between PWs and GWs, a nonconservative GWD (NCGWD) source term of the linearized quasigeostrophic potential vorticity equation is considered. A ZWN-2 pattern of the NCGWD forcing is developed around z = 55–60 km with a secondary peak around z = 40 km just before the PWs of ZWN-2 in the stratosphere began to enhance. A significant positive correlation between the NCGWD forcing in the upper stratosphere and lower mesosphere (USLM; 0.3–0.1 hPa in the present data) and the PWs of ZWN-2 in the stratosphere (5–1 hPa) exists. This result demonstrates that the amplification of the PWs of ZWN-2 in the stratosphere before the onset of SSW09 is likely related to the generation of PWs by GWD in the USLM, which is revealed by the enhanced downward-propagating PWs of ZWN-2 into the stratosphere from above.


2020 ◽  
Vol 77 (6) ◽  
pp. 2187-2202 ◽  
Author(s):  
Etienne Dunn-Sigouin ◽  
Tiffany Shaw

Abstract Extreme stratospheric eddy and sudden stratospheric warming (SSW) events both involve anomalous stratospheric eddy heat flux. The cause of the anomaly has been hypothesized to be due to tropospheric or stratospheric dynamics. Here, ensemble spectral nudging experiments in a dry dynamical-core model are used to quantify the role of the troposphere versus the stratosphere. The experiments focus on the wavenumber-1 heat flux since it dominates the anomalous stratospheric eddy heat flux during both events. Nudging the stratospheric zonal-mean flow does not account for the anomalous stratospheric wave-1 heat flux. Nudging either tropospheric wave-1 or higher-order wavenumbers (k ≥ 2) accounts for a large fraction of the anomalous stratospheric wave-1 heat flux. Mechanism denial experiments, whereby tropospheric eddies (wave 1 or k ≥ 2) are nudged and the zonal-mean flow is fixed to climatology, suggest the climatological stratospheric zonal-mean flow is sufficient to account for the anomalous stratospheric wave-1 heat flux and wave–wave interaction plays a role in generating the anomalous tropospheric wave-1 source. Taken together, the experiments suggest the troposphere dominates the anomalous stratospheric eddy heat flux during extreme stratospheric eddy and SSW events while the stratospheric zonal-mean flow plays secondary role.


Sign in / Sign up

Export Citation Format

Share Document