scholarly journals Understanding of European Cold Extremes, Sudden Stratospheric Warming, and Siberian Snow Accumulation in the Winter of 2017/18

2020 ◽  
Vol 33 (2) ◽  
pp. 527-545 ◽  
Author(s):  
Zhuozhuo Lü ◽  
Fei Li ◽  
Yvan J. Orsolini ◽  
Yongqi Gao ◽  
Shengping He

AbstractIt is unclear whether the Eurasian snow plays a role in the tropospheric driving of sudden stratospheric warming (SSW). The major SSW event of February 2018 is analyzed using reanalysis datasets. Characterized by predominant planetary waves of zonal wave 2, the SSW developed into a vortex split via wave–mean flow interaction. In the following two weeks, the downward migration of zonal-mean zonal wind anomalies was accompanied by a significant transition to the negative phase of the North Atlantic Oscillation, leading to extensive cold extremes across Europe. Here, we demonstrate that anomalous Siberian snow accumulation could have played an important role in the 2018 SSW occurrence. In the 2017/18 winter, snow depths over Siberia were much higher than normal. A lead–lag correlation analysis shows that the positive fluctuating snow depth anomalies, leading to intensified “cold domes” over eastern Siberia (i.e., in a region where the climatological upward planetary waves maximize), precede enhanced wave-2 pulses of meridional heat fluxes (100 hPa) by 7–8 days. The snow–SSW linkage over 2003–19 is further investigated, and some common traits among three split events are found. These include a time lag of about one week between the maximum anomalies of snow depth and wave-2 pulses (100 hPa), high sea level pressure favored by anomalous snowpack, and a ridge anchoring over Siberia as precursor of the splits. The role of tropospheric ridges over Alaska and the Urals in the wave-2 enhancement and the role of Arctic sea ice loss in Siberian snow accumulation are also discussed.

Author(s):  
Yu Shi ◽  
Oleksandr Evtushevsky ◽  
Valerii Shulga ◽  
Gennadi Milinevsky ◽  
Andrew Klekociuk ◽  
...  

Planetary waves in the mesosphere are studied using observational data and models to establish their origin, as there are indications of their generation independently of waves in the stratosphere. The quantitative relationships between zonal wave numbers m = 1 (wave 1) and m = 2 (wave 2) were studied with a focus on the mid-latitude mesosphere at 50N latitude. Aura Microwave Limb Sounder measurements were used to estimate wave amplitudes in geopotential height during the 2020–2021 winter major sudden stratospheric warming. The moving correlation between the wave amplitudes shows that, in comparison with the anticorrelation in the stratosphere, wave 2 positively correlates with wave 1 and propagates ahead of it in the mesosphere. A positive correlation r = 0.5–0.6, statistically significant at the 95% confidence level, is observed at 1–5-day time lag and in the 75–91 km altitude range, which is the upper mesosphere–mesopause region. Wavelet analysis shows a clear 8-day period in waves 1 and 2 in the mesosphere at 0.01 hPa (80 km), while in the stratosphere–lower mesosphere the period is twice as long at 16-days; this is statistically significant only in wave 2. Possible sources of mesospheric planetary waves are discussed.


2020 ◽  
Vol 77 (6) ◽  
pp. 2187-2202 ◽  
Author(s):  
Etienne Dunn-Sigouin ◽  
Tiffany Shaw

Abstract Extreme stratospheric eddy and sudden stratospheric warming (SSW) events both involve anomalous stratospheric eddy heat flux. The cause of the anomaly has been hypothesized to be due to tropospheric or stratospheric dynamics. Here, ensemble spectral nudging experiments in a dry dynamical-core model are used to quantify the role of the troposphere versus the stratosphere. The experiments focus on the wavenumber-1 heat flux since it dominates the anomalous stratospheric eddy heat flux during both events. Nudging the stratospheric zonal-mean flow does not account for the anomalous stratospheric wave-1 heat flux. Nudging either tropospheric wave-1 or higher-order wavenumbers (k ≥ 2) accounts for a large fraction of the anomalous stratospheric wave-1 heat flux. Mechanism denial experiments, whereby tropospheric eddies (wave 1 or k ≥ 2) are nudged and the zonal-mean flow is fixed to climatology, suggest the climatological stratospheric zonal-mean flow is sufficient to account for the anomalous stratospheric wave-1 heat flux and wave–wave interaction plays a role in generating the anomalous tropospheric wave-1 source. Taken together, the experiments suggest the troposphere dominates the anomalous stratospheric eddy heat flux during extreme stratospheric eddy and SSW events while the stratospheric zonal-mean flow plays secondary role.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
M. A. Webster ◽  
C. Parker ◽  
L. Boisvert ◽  
R. Kwok

AbstractIdentifying the mechanisms controlling the timing and magnitude of snow accumulation on sea ice is crucial for understanding snow’s net effect on the surface energy budget and sea-ice mass balance. Here, we analyze the role of cyclone activity on the seasonal buildup of snow on Arctic sea ice using model, satellite, and in situ data over 1979–2016. On average, 44% of the variability in monthly snow accumulation was controlled by cyclone snowfall and 29% by sea-ice freeze-up. However, there were strong spatio-temporal differences. Cyclone snowfall comprised ~50% of total snowfall in the Pacific compared to 83% in the Atlantic. While cyclones are stronger in the Atlantic, Pacific snow accumulation is more sensitive to cyclone strength. These findings highlight the heterogeneity in atmosphere-snow-ice interactions across the Arctic, and emphasize the need to scrutinize mechanisms governing cyclone activity to better understand their effects on the Arctic snow-ice system with anthropogenic warming.


2017 ◽  
Author(s):  
Sheng-Yang Gu ◽  
Xiankang Dou ◽  
Dora Pancheva

Abstract. The quasi-two day wave (QTDW) during austral summer period usually coincides with sudden stratospheric warming (SSW) event in the winter hemisphere, while the influences of SSW on QTDW are not totally understood. In this work, the anomalous QTDW activities during the major SSW period of January 2006 are further investigated on the basis of hourly Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) reanalysis dataset. Strong westward QTDW with zonal wave number 2 (W2) is identified besides the conventionally dominant mode of zonal wave number 3 (W3). Meanwhile, the W3 peaks with an extremely short period of ~ 42 hours. Compared with January 2005 with no evident SSW, we found that the zonal mean zonal wind in the summer mesosphere is enhanced during 2006. The enhanced summer easterly sustains critical layers for W2 and short-period W3 QTDWs with larger phase speed, which facilitate their amplification through wave-mean flow interaction. The stronger summer easterly also provides stronger barotropic/baroclinic instabilities and thus larger forcing for the amplification of QTDW. The inter-hemispheric coupling induced by strong winter stratospheric planetary wave activities during SSW period is most likely responsible for the enhancement of summer easterly. Besides, we found that the nonlinear interaction between W3 QTDW and the wave number 1 stationary planetary wave (SPW1) may also contribute to the source of W2 at middle and low latitudes in the mesosphere.


2021 ◽  
Author(s):  
Guangyu Liu ◽  
Toshihiko Hirooka ◽  
Nawo Eguchi ◽  
Kirstin Krüger

Abstract. This study analyzes the Japanese 55-year Reanalysis (JRA-55) dataset from 2002 to 2019 to examine the sudden stratospheric warming event that occurred in the Southern Hemisphere (SH) in 2019 (hereafter referred to as SSW2019). Strong warming at the polar cap and decelerated westerly winds were observed, but since there was no reversal of westerly winds to easterly winds at 60° S in the middle to lower stratosphere, the SSW2019 is classified as a minor warming event. The results show that quasi-stationary planetary waves of zonal wavenumber 1 developed during the SSW2019. The strong vertical component of the Eliassen–Palm flux with zonal wavenumber 1 is indicative of pronounced propagation of planetary waves to the stratosphere. The wave driving in September 2019 shows that the values are larger than those of the major SSW event in 2002 (hereafter referred to as SSW2002). Since there was no pronounced preconditioning (as in SSW2002) and the polar vortex was already strong before the SSW2019 occurred, a major disturbance of the polar vortex was unlikely to have taken place. The strong wave driving in SSW2019 occurred in high latitudes. Waveguides (i.e., positive values of the refractive index) are found at high latitudes in the upper stratosphere during the warming period, which provided favorable conditions for quasi-stationary planetary waves to propagate upward and poleward.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hongqing Yang ◽  
Ke Fan

This study investigates the out-of-phase change in the Siberian High (SH) between December and January (stronger than normal in December and weaker than normal in January, and vice versa). The results show that the monthly reversal frequency of the SH between December and January increases significantly after 2000 from 30% (1981–2000) to 63% (2001-2019). Correspondingly, the influence of November snow cover over Siberia on the phase reversal of the SH has intensified after 2000. The reasons may be as follows. Higher snow depth over Siberia (SSD) in November corresponds to stronger diabatic cooling and increased snow accumulation over Siberia in November and December, which may strengthen the SH in December via the positive feedback of snow albedo. The dynamic mechanisms between the higher SSD in November and weaker SH in January are further investigated from the perspective of troposphere–stratosphere interaction. Such anomalously higher SSD with strong upward heat flux induces the upward-propagating wave activity flux in November and December over the Urals and Siberia, leading to a weaker and warmer stratospheric polar vortex in January. Subsequently, the anomalies of the stratospheric polar vortex signal propagate downwards, giving rise to a negative Arctic Oscillation–like structure in the troposphere and a weakening of the SH in January. This mechanism can be partly reproduced in CMIP6. Additionally, the variability of the September–October Arctic sea ice mainly leads to coherent variations of the SH in December and January via the eddy–mean flow interaction before 2000. Furthermore, the preceding November snow cover over Siberia enhances the intraseasonal prediction skill for the winter SH after 2000. Meanwhile, considering the previous November SSD, the prediction accuracy for the out-of-phase change in the SH between December and January increases from 16% (outputs of the NCEP’s Climate Forecast System, version 2) to 75%.


2020 ◽  
pp. 241-254
Author(s):  
A.I. Pogoreltsev ◽  
O.G. Aniskina ◽  
A.Y. Kanukhina ◽  
T.S. Ermakova ◽  
A.I. Ugryumov ◽  
...  

Analysis of the dynamical regime changes in the stratosphere during different phases of the Sudden Stratospheric Warming (SSW) that has been observed in January 2013 is presented. The different mechanisms of SSW influence on the tropospheric circulation through the stationary planetary waves (SPWs) reflection and/or increase in SPWs activity due to nonlinear interaction with the mean flow and their subsequent propagation into the troposphere are discussed. Three-dimensional wave activity flux and its divergence are determined using the UK Met Office data; the synoptic situation and its changes during the SSW events are analyzed. The wave activity penetrates downward from stratosphere into the troposphere and can affect weather processes during the SSW and right afterwards. It is this time that polar anticyclones can be formed at high latitudes, which quickly go southward along meridional directions and then deviate to the East at middle latitudes. Interestingly, the locations of polar anticyclone formations and subsequent displacements correspond to the regions of maximal horizontal wave activity fluxes connected with stratospheric processes. The results obtained allow us to suggest that accounting of stratospheric processes and their influence on the troposphere in winter season can improve the middle-range forecast of anticyclone formation and cold weather events at middle latitudes.


Sign in / Sign up

Export Citation Format

Share Document