scholarly journals WESgraph: a graph database for the wind farm domain

2020 ◽  
Vol 5 (1) ◽  
pp. 259-284
Author(s):  
Erik Quaeghebeur ◽  
Sebastian Sanchez Perez-Moreno ◽  
Michiel B. Zaaijer

Abstract. The construction and management of a wind farm involve many disciplines. It is hard for a single designer or developer to keep an overview of all the relevant concepts, models, and tools. Nevertheless, this is needed when performing integrated modeling or analysis. To help researchers keep this overview, we have created WESgraph (the Wind Energy System graph), a knowledge base for the wind farm domain, implemented as a graph database. It currently contains 1222 concepts and 1725 relations between them. This paper presents the structure of this graph database – content stored in nodes and the relationships between them – as a foundational ontology, which classifies the domain's concepts. This foundational ontology partitions the domain in two: a part describing physical aspects and a part describing mathematical and computational aspects. This paper also discusses a number of generally difficult cases that exist when adding content to such a knowledge base. This paper furthermore discusses the potential applications of WESgraph and illustrates its use for computation pathway discovery – the application that triggered its creation. It also contains a description of our practical experience with its design and use as well as our thoughts about the community use and management of this tool.

2019 ◽  
Author(s):  
Erik Quaeghebeur ◽  
Sebastian Sanchez Perez-Moreno ◽  
Michiel B. Zaaijer

Abstract. The construction and management of an offshore wind farm involves many disciplines. It is hard for a single designer or developer to keep an overview of all the relevant concepts, models, and tools. Nevertheless, this is needed when performing integrated modeling or analysis. To help researchers keep this overview, we have created OWFgraph, a knowledge base for the offshore wind farm domain, implemented as a graph database. This paper presents the structure of this graph database – content stored in nodes and relationships between them – as a foundational ontology, which classifies the domain’s concepts. This foundational ontology partitions the domain in two: a part describing physical aspects and a part describing mathematical and computational aspects. This paper also discusses a number of general difficult cases that exist when adding content to such a knowledge base. This paper furthemore discusses the potential applications of OWFgraph and illustrate its use for computation pathway discovery – the application that triggered its creation. It also contains a description of our practical experience with its design and use and our thoughts about the community use and management of this tool.


Author(s):  
Gareth Kay ◽  
Libor Coufal ◽  
Mark Pearson

This article introduces the National Library of Australia’s Digital Preservation Knowledge Base which helps the Library to manage digital objects from its collections over the long term. The Knowledge Base includes information on file formats, rendering software, operating systems, hardware and, most importantly, the relationships between them. Most of the work on the Knowledge Base over the last few years has been focused on the mapping of functional relationships between file formats, their versions and software applications. The information is gathered through unique empirical research and is initially being recorded in a multiple-worksheet Excel file in a semi-structured format, though development of a prototype graph database is underway.


2021 ◽  
Author(s):  
Abdelbari Elmariami ◽  
Wedad Elosta ◽  
Mohamed Elfleet ◽  
Yusef Khalifa

Abstract Wind offers Libya an abundant, domestic, and currently untapped carbon free energy resource. This paper describes LCA model of assessment for the identified wind farm near the coastal city Zawia in Libya. The city has been affected by GHG emissions associated with Oil refinery facilities for the last five decades. The model study investigates the life cycle energy performance of the wind farm and the environmental impact category indicators at midpoint level, specifically; acidification and climate change. LCA was conducted to the proposed utility-scale wind farm with total estimated power of 20 MW, the assessment was conducted using the principles of the international standards ISO14040 and 14044. The results demonstrated that the amount of CO2 that can be avoided from the proposed wind farm would be about 2 MtCO2. The other emissions that could be avoided are 352.7 kg CH4 and 63.5 kg N2O. This would contribute to the alleviation of global climate change and global sustainability energy system which is recommended by UN SDG7.


Author(s):  
Samir Rohatgi ◽  
James H. Oliver ◽  
Stuart S. Chen

Abstract This paper describes the development of OPGEN (Opportunity Generator), a computer based system to help identify areas where a knowledge based system (KBS) might be beneficial, and to evaluate whether a suitable system could be developed in that area. The core of the system is a knowledge base used to carry out the identification and evaluation functions. Ancillary functions serve to introduce and demonstrate KBS technology to enhance the overall effectiveness of the system. All aspects of the development, from knowledge acquisition through to testing are presented in this paper.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4246 ◽  
Author(s):  
Guglielmo D’Amico ◽  
Giovanni Masala ◽  
Filippo Petroni ◽  
Robert Adam Sobolewski

Because of the stochastic nature of wind turbines, the output power management of wind power generation (WPG) is a fundamental challenge for the integration of wind energy systems into either power systems or microgrids (i.e., isolated systems consisting of local wind energy systems only) in operation and planning studies. In general, a wind energy system can refer to both one wind farm consisting of a number of wind turbines and a given number of wind farms sited at the area in question. In power systems (microgrid) planning, a WPG should be quantified for the determination of the expected power flows and the analysis of the adequacy of power generation. Concerning this operation, the WPG should be incorporated into an optimal operation decision process, as well as unit commitment and economic dispatch studies. In both cases, the probabilistic investigation of WPG leads to a multivariate uncertainty analysis problem involving correlated random variables (the output power of either wind turbines that constitute wind farm or wind farms sited at the area in question) that follow different distributions. This paper advances a multivariate model of WPG for a wind farm that relies on indexed semi-Markov chains (ISMC) to represent the output power of each wind energy system in question and a copula function to reproduce the spatial dependencies of the energy systems’ output power. The ISMC model can reproduce long-term memory effects in the temporal dependence of turbine power and thus understand, as distinct cases, the plethora of Markovian models. Using copula theory, we incorporate non-linear spatial dependencies into the model that go beyond linear correlations. Some copula functions that are frequently used in applications are taken into consideration in the paper; i.e., Gumbel copula, Gaussian copula, and the t-Student copula with different degrees of freedom. As a case study, we analyze a real dataset of the output powers of six wind turbines that constitute a wind farm situated in Poland. This dataset is compared with the synthetic data generated by the model thorough the calculation of three adequacy indices commonly used at the first hierarchical level of power system reliability studies; i.e., loss of load probability (LOLP), loss of load hours (LOLH) and loss of load expectation (LOLE). The results will be compared with those obtained using other models that are well known in the econometric field; i.e., vector autoregressive models (VAR).


Author(s):  
Shengli Tang ◽  
Zuwei He ◽  
Tao Chang ◽  
Liming Xuan

Abstract In this paper, the Construction and functions of the self-study system for power plant operation is introduced. As a self-study system, it consists of two parts, a simulator and knowledge base. The knowledge base has been built by the combination of expert system and artificial neural network, which supports the system with practical experience and theoretic knowledge. The trainees’ knowledge can be improved by using the system. The realization of the intelligent training function, applications of expert system and artificial neural network are mainly introduced in this paper.


Machines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 35 ◽  
Author(s):  
Francesco Castellani ◽  
Davide Astolfi ◽  
Mauro Peppoloni ◽  
Francesco Natili ◽  
Daniele Buttà ◽  
...  

In the recent years, distributed energy production has been one of the main research topics about renewable energies. The decentralization of electric production from wind resources raises the issues of reducing the size of generators, from the MW scale of industrial wind farm turbines to the kW scale, and possibly employing them in urban areas, where the wind flow is complex and extremely turbulent because of the presence of buildings and obstacles. On these grounds, the use of small-scale vertical axis small wind turbines (VASWT) is a valid choice for on-site generation (OSG), considering their low sensitivity with respect to turbulent flow and that there is no need to align the turbine with wind direction, as occurs with horizontal axis small wind turbines (HASWT). In addition, VASWTs have a minor acoustic impact with respect to HASWTs. The aim of this paper is to study the interactions that take place between a 1.2 kW, vertical axis, Darrieus VASWT turbine and a small, experimental building, in order to analyze the noise and the vibrations transmitted to the structure. One method to damp the vibrations is then assessed through spectral analysis of data acquired through accelerometers located both in the mast of the wind turbine and at the building walls. The results confirm the usefulness of dampers to increase the building comfort regarding vibrations.


2012 ◽  
Vol 512-515 ◽  
pp. 1027-1031 ◽  
Author(s):  
Xu Dong Guo ◽  
Bao Ming Ge ◽  
Da Qiang Bi ◽  
Xin Yu Yang

Wind farms with vanadium battery energy storage system are recognized and welcomed. Against the phenomenon of current distribution unreasonable while vanadium batteries are directly paralleled, a control strategy of vanadium battery parallel based on the state of charge (SOC) is proposed. The current control formula is given in this paper. Vanadium batteries are paralleled to adjust the power grid at the exit of wind farms by the bidirectional DC/DC converter. A wind farm model with vanadium battery energy system is simulated on MATLAB/Simulink. The simulation results show that this system can adjust the power grid of wind farms and achieve the goal that the charging and discharging of vanadium batteries are determined by their SOC, avoiding the overcharge or over-discharge.


2016 ◽  
Author(s):  
Humaid Al Badi ◽  
John Boland ◽  
David Bruce

Abstract. Dust aerosol particle size plays a crucial role in determining dust cycle in the atmosphere and the extent of its impact on the other atmospheric parameters. The in-situ measurements of dust particle size are very costly, spatially sparse and time-consuming. This paper presents an algorithm to retrieve effective dust diameter using infrared band brightness temperature from SEVIRI (the Spinning Enhanced Visible and InfaRed Imager) on the Meteosat satellite. An empirical model was constructed that directly relates differences in brightness temperatures of 8.7, 10.8 and 12.0 μm bands to effective dust diameter using the Mie extinction efficiency factor. Three case studies are used to test the model. The results showed consistency between the model and in-situ aircraft measurements. A severe dust storm over the Middle-East is presented to demonstrate the use of the model. This algorithm is expected to contribute to filling the gap created by the discrepancies between the current size distributions retrieval techniques and aircraft measurements. Potential applications include enhancing the accuracy of atmospheric modelling and forecasting horizontal visibility and solar energy system performance over regions affected by dust storms.


2021 ◽  
Vol 19 ◽  
pp. 609-613
Author(s):  
O. Cabeza-Gras ◽  
◽  
V. Jaramillo-García ◽  

In this communication we present the construction of a wind farm, WF, with 10 MW of nominal power. This WF will increase the quantity and quality of electricity in the area of Ambocas, Loja, Ecuador, strengthen a system with many voltage drops. The place chosen is ideal, because it is long from population, in a hill side near an existing road. Wind is persistent and has a constant orientation all along the year. The generated power will be connected with the electricity system in the Portovelo Substation, which is about 12 km from the WF site. We have calculated the expected electricity production all along the year taking into account all important data to simulate successfully the WF operation in real conditions. We have also modelled the interconnexion of the WF with the substation and its effect in the 69 kV bar. Finally, a brief economical analysis of the project gives an annual average profit higher than 3.5 USD million without taxes, while the inversion would be cancelled in less than 5 years of the 20 ones planned for the WF in full operation.


Sign in / Sign up

Export Citation Format

Share Document