scholarly journals Stem Cell Repair for Cardiac Muscle Regeneration: A Review of the Literature

2016 ◽  
Vol 4 (1) ◽  
pp. 19-25
Author(s):  
Georgiana Farrugia ◽  
Rena Balzan

The notion that the human adult heart is a quiescent organ incapable of self-regeneration has been successfully challenged. It is now evident that the heart possesses a significant ability for repair and regeneration. Stem cells of endogenous cardiac origin are currently considered to possess the greatest ability to differentiate into cardiomyocytes. The major types of cardiac stem cells that show a promising potential to replace damaged cardiomyocytes include C-KIT positive (C-KIT+) cardiac progenitor cells, cardiosphere-derived progenitor cells, islet-1 (Isl1+) cardiac progenitor cells, side-population cardiac progenitor cells, epicardium-derived progenitor cells and stem cell antigen-1 (SCA1+) cardiac progenitor cells. Moreover, stem cells of extra-cardiac origin are also thought to restore contractility and vascularization of the myocardium. These include skeletal myoblasts, bone marrow mononuclear cells, mesenchymal stem cells, endothelial progenitor cells as well as embryonic stem cells. The need for further investigation on cardiac stem cell therapeutic strategies still remains.

2009 ◽  
Vol 19 (S2) ◽  
pp. 74-84 ◽  
Author(s):  
Sunjay Kaushal ◽  
Jeffrey Phillip Jacobs ◽  
Jeffrey G. Gossett ◽  
Ann Steele ◽  
Peter Steele ◽  
...  

AbstractHeart failure is a leading cause of death worldwide. Current therapies only delay progression of the cardiac disease or replace the diseased heart with cardiac transplantation. Stem cells represent a recently discovered novel approach to the treatment of cardiac failure that may facilitate the replacement of diseased cardiac tissue and subsequently lead to improved cardiac function and cardiac regeneration.A stem cell is defined as a cell with the properties of being clonogenic, self-renewing, and multipotent. In response to intercellular signalling or environmental stimuli, stem cells differentiate into cells derived from any of the three primary germ layers: ectoderm, endoderm, and mesoderm, a powerful advantage for regenerative therapies. Meanwhile, a cardiac progenitor cell is a multipotent cell that can differentiate into cells of any of the cardiac lineages, including endothelial cells and cardiomyocytes.Stem cells can be classified into three categories: (1) adult stem cells, (2) embryonic stem cells, and (3) induced pluripotential cells. Adult stem cells have been identified in numerous organs and tissues in adults, including bone-marrow, skeletal muscle, adipose tissue, and, as was recently discovered, the heart. Embryonic stem cells are derived from the inner cell mass of the blastocyst stage of the developing embryo. Finally through transcriptional reprogramming, somatic cells, such as fibroblasts, can be converted into induced pluripotential cells that resemble embryonic stem cells.Four classes of stem cells that may lead to cardiac regeneration are: (1) Embryonic stem cells, (2) Bone Marrow derived stem cells, (3) Skeletal myoblasts, and (4) Cardiac stem cells and cardiac progenitor cells. Embryonic stem cells are problematic because of several reasons: (1) the formation of teratomas, (2) potential immunologic cellular rejection, (3) low efficiency of their differentiation into cardiomyocytes, typically 1% in culture, and (4) ethical and political issues. As of now, bone marrow derived stem cells have not been proven to differentiate reproducibly and reliably into cardiomyocytes. Skeletal myoblasts have created in vivo myotubes but have not electrically integrated with the myocardium. Cardiac stem cells and cardiac progenitor cells represent one of the most promising types of cellular therapy for children with cardiac failure.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Alaa Marzouk

Introduction: The journey from single cell to complex being is attributable to stem cells role. Adult stem cells originate during ontogeny & persist in specialized niches within organs. Asymmetric division of each stem cell during differentiation produces : one daughter stem cell & one daughter transit amplifying/intermediate cell having migratory properties. Forced migration of hematopoietic stem/progenitor cells (HSPC) from bone marrow into peripheral blood is called mobilization. Accumulating evidence suggests that attenuation of the chemokine stromal derived factor-1(SDF-1)-CXCR4 axis that plays a pivotal role in retention of HSPC in bone marrow (BM) results in the release of these cells from the BM into peripheral blood. Recently, adult cells have been genetically reprogrammed to an embryonic stem cell like state. Induced pluripotent stem cells (IPSCs) were similar to human embryonic stem cells in morphology, proliferative capacity, expression of cell surface antigens, & gene expression. Treatment of ischemic vascular disease of lower limbs remains a significant challenge. Unfortunately, if medical & surgical salvage procedures fail, amputation is an unavoidable result for those patients. Aim of Work: (Hypothesis) To assess the application of implantation of autologous stem/progenitor cell in the treatment of chronic limb ischemia & to evaluate the safety, efficacy & feasibility of this novel therapeutic approach. Methods: A total of 24 patients with chronic limb ischemia not eligible for arterial reconstruction or endovascular procedures were enrolled & randomized (1:1) to either the implanted group or the control group. Control group: Conventional medical therapy in the form of anti platelet therapy & vasodilators. Implanted group: Subcutaneous injection of 300μ g/day of recombinant human granulocyte colony stimulating factor (G-CSF) for 5 days to mobilize stem/progenitor cells from BM. Total leucocytic count is measured daily to follow up successful mobilization of bone marrow mononuclear cells (BMMNCs). Stem cell Harvesting After 5 days peripheral blood mononuclear cells (PBMNCs) were harvested using a cell separator. Samples from apheresis products are subjected to TLC measurement & immunophenotypic characterization of CD34+ cells by flow cytometry. The collected PBMNCs were implanted by multiple intramuscular injections into ischemic limbs. Results: There was significant increase in pain free walking distance & ankle/brachial index (ABI) & significant decreased rest pain. Effectiveness was documented by : reduced number of amputation, increase ABI & improvement of the quality of life in therapeutic group compared to control group. Conclusion: The novel therapeutic approach of PBMNCs implantation in patients with chronic limb ischemia is safe, feasible & effective in decreasing co-morbidity & rate of amputation. Safety was manifested by absence of complications during G-CSF therapy or during harvesting & injection of the stem cells. Recommendations: 1- Future studies on larger number of patients & longer follow up. 2- Controlled studies using different methods & different cell population (PBMNCs, BMMNCs or MSCs) to compare the outcome of each. 3-Studing the role of endothelial progenitor cell dysfunction in different ischemic diseases to develop successful gene therapy.


2017 ◽  
Vol 44 (4) ◽  
pp. 1435-1444 ◽  
Author(s):  
Hong-Xi Zhao ◽  
Feng Jiang ◽  
Ya-Jing Zhu ◽  
Li Wang ◽  
Ke Li ◽  
...  

Background: Despite the great potential of utilizing human embryonic stem cells (hESCs)-derived cells as cell source for transplantation, these cells were often rejected during engraftment by the immune system due to adaptive immune response. Methods: We first evaluated HLA-G expression level in both hESCs and differentiated progenitor cells. After that, we generated modified hESC lines that over-express HLA-G1 using lentiviral infection with the construct contains both HLA-G1 and GFP tag. The lentivirus was first produced by co-transfecting HLA-G1 expressing lentiviral vector together with packaging vectors into packaging cell line 293T. Then the produced virus was used for the infection of selected hESC lines. We characterized the generated cell lines phenotype, including pluripotency and self-renewal abilities, as well as immune tolerance ability by mixed lymphocyte reaction (MLR) and cytotoxicity assays. Results: Although the hESCs do not express high levels of HLA-G1, over-expression of HLA-G1 in hESCs still retains their stem cell characteristics as determined by retaining the expression levels of OCT4 and SOX2, two critical transcriptional factors for stem cell function. Furthermore, the HLA-G1 overexpressing hESCs retain the self-renewal and pluripotency characteristics of stem cells, which can differentiate into different types of cells, including pigment cells, smooth muscle cells, epithelia-like cells, and NPCs. After differentiation, the differentiated cells including NPCs retain the high levels of HLA-G1 protein. In comparison with conventional NPCs, these HLA-G1 positive NPCs have enhanced immune tolerance ability. Conclusions: Ectopic expression of HLA-G1, a non-classical major histocompatibility complex class I (MHC I) antigen that was originally discovered involving in engraftment tolerance during pregnancy, can enhance the immunological tolerance in differentiated neural progenitor cells (NPCs). Our study shows that stably overexpressing HLA-G1 in hESCs might be a feasible strategy for enhancing the engraftment of NPCs during transplantation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1395-1395
Author(s):  
Morayma Reyes ◽  
Jeffrey S. Chamberlain

Abstract Multipotent Adult Progenitor Cells (MAPC) are bone marrow derived stem cells that can be extensively expanded in vitro and can differentiate in vivo and in vitro into cells of all three germinal layers: ectoderm, mesoderm, endoderm. The origin of MAPC within bone marrow (BM) is unknown. MAPC are believed to be derived from the BM stroma compartment as they are isolated within the adherent cell component. Numerous studies of bone marrow chimeras in human and mouse point to a host origin of bone marrow stromal cells, including mesenchymal stem cells. We report here that following syngeneic bone marrow transplants into lethally irradiated C57Bl/6 mice, MAPC are of donor origin. When MAPC were isolated from BM chimeras (n=12, 4–12 weeks post-syngeneic BM transplant from a transgenic mouse ubiquitously expressing GFP), a mixture of large and small GFP-positive and GFP-negative cells were seen early in culture. While the large cells stained positive for stroma cell markers (smooth muscle actin), mesenchymal stem cell makers (CD73, CD105, CD44) or macrophages (CD45, CD14), the small cells were negative for all these markers and after 30 cell doublings, these cells displayed the classical phenotype of MAPC (CD45−,CD105−, CD44−, CD73−, FLK-1+(vascular endothelial growth factor receptor 2, VEGFR2), Sca-1+,CD13+). In a second experiment, BM obtained one month post BM transplant (n=3) was harvested and mononuclear cells were sorted as GFP-positive and GFP-negative cells and were cultured in MAPC expansion medium. MAPC grew from the GFP-positive fraction. These GFP positive cells displayed the typical MAPC-like immunophenotypes, displayed a normal diploid karyotype and were expanded for more than 50 cell doublings and differentiated into endothelial cells, hepatocytes and neurons. To rule out the possibility that MAPC are the product of cell fusion between a host and a donor cell either in vivo or in our in vitro culture conditions, we performed sex mismatched transplants of female GFP donor BM cells into a male host. BM from 5 chimeras were harvested 4 weeks after transplant and MAPC cultures were established. MAPC colonies were then sorted as GFP-positive and GFP- negative and analyzed for the presence of Y-chromosome by FISH analysis. As expected all GFP-negative (host cells) contained the Y-chromosome whereas all GFP-positive cells (donor cells) were negative for the Y-chromosome by FISH. This proves that MAPC are not derived from an in vitro or in vivo fusion event. In a third study, BM mononuclear cells from mice that had been previously BM-transplanted with syngeneic GFP-positive donors (n=3) were transplanted into a second set of syngeneic recipients (n=9). Two months after the second transplant, BM was harvested and mononuclear cells were cultured in MAPC medium. The secondary recipients also contained GFP-positive MAPC. This is the first demonstration that BM transplantation leads to the transfer of cells that upon isolation in vitro generate MAPCs and, whatever the identity of this cell may be, is eliminated by irradiation. We believe this is an important observation as MAPC hold great clinical potential for stem cell and/or gene therapy and, thus, BM transplant may serve as a way to deliver and reconstitute the MAPC population. In addition, this study provides insight into the nature of MAPC. The capacity to be transplantable within unfractionated BM transplant renders a functional and physiological distinction between MAPC and BM stromal cells. This study validates the use of unfractionated BM transplants to study the nature and possible in vivo role of MAPC in the BM.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4231-4231
Author(s):  
Amos S. Gaikwad ◽  
Michael Cubbage ◽  
Tatiana Goltsova ◽  
Christopher Threeton ◽  
Maria Ty ◽  
...  

Abstract Abstract 4231 Cord blood (CB) is a rich source of hematopoietic stem cells (HSC) with long-term repopulating activity necessary for allogeneic stem cell transplantation. CD34+ stem cells are considered sufficient for transplantation, however recent progress in stem cell biology indicates that cells with other surface markers such as CD133 or cells expressing high aldehyde dehydrogenase activity with low side scatter (ALDHhigh/SSClow) or a rare side population (SP) of cells that exclude the Hoechst 33342 vital dye via multi drug transporters have been shown to possess stem cell properties. We characterized CD34+, CD133+, ALDH+ and SP in mononuclear cells (MNC) isolated from human CB. While the SP cell population is rare and detectable in few CB-MNC examined, we found abundant CD34+ and CD133+ cells (1.0+/-0.5 and 0.8+/-0.4 per 100 CD45+ MNC cells, respectively) following the ISHAGE protocol. A distinct ALDH+ cell population (median of 0.26%; range of 0.1 to 0.5%) was also present in all of the CB-MNC analyzed. Over 90% of the ALDH+ cells were also CD34+ and CD133+. The ability of CB-MNC to form colonies in methocult semi-solid media supplemented with cytokines yielded myeloid, lymphoid and erythroid colonies. The clonogenic potential of CB-MNC ranged from 16-48%. We are assessing the colony forming ability of purified stem cell fractions using flow cytometry. The clonogenic efficiency of these individual putative stem cells will be discussed. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 64 (4) ◽  
pp. 928.1-928 ◽  
Author(s):  
D Hu ◽  
W Hu ◽  
S Majumdar ◽  
T Gauntner ◽  
Y Li ◽  
...  

Estrogens are implicated in prostate development and cancer, while stem cells are essential in tissue homeostasis and carcinogenesis. We have previously demonstrated that estradiol-17β (E2) treatment augments prostaspheres (PS) number and size, implicating them as direct estrogen targets. The present studies sought to elucidate specific roles for ERα and ERβ in prostate stem and progenitor cells.Prostate stem-progenitor cells were identified and isolated from normal primary prostate epithelial cells (PrEC) using long term BrdU retention in 3-D PS culture. FACS analyses (BrdU/ERα or ERβ) showed prostate stem and progenitor populations were both ERα+ and ERβ+. BrdU-retaining stem cells expressed high levels of ERβ and lower ERα as compared to non-label-retaining progenitor cells, suggesting ERβ dominance in the prostate stem cell. Estradiol increased BrdU-retaining cell numbers by enhancing stem cell self-renewal through symmetric division. While ERα siRNA blocked the E2-stimulated BrdU-retaining cells, ERβ knockdown augmented the E2-induced increase of BrdU-retaining cells. Together these findings suggest that ERα stimulates whereas ERβ suppresses stem cell self-renew. This conclusion is supported by separate studies on 2-D cultured PrEC with FACS stem-like cell side-population analysis using selective ER antagonists and siRNA. Although ERβ siRNA did not influence ERα mRNA levels, ERα siRNA doubled ERβ expression suggesting a suppressive role of ERα on ERβ action.In total, the present findings identify distinct localization patterns and roles for ERα and ERβ in human prostate stem-like and daughter progenitor cells with ERα driving self-renewal and ERβ braking division. We propose that a delicate balance between ERα and ERβ contributes to prostate stem cell niche homeostasis and that their dysregulation may contribute to prostate carcinogenesis and progression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Miranda Robbins ◽  
Venkat Pisupati ◽  
Roberta Azzarelli ◽  
Samer I. Nehme ◽  
Roger A. Barker ◽  
...  

Abstract Background Stem cell-based therapies for neurodegenerative diseases like Parkinson’s disease are a promising approach in regenerative medicine and are now moving towards early stage clinical trials. However, a number of challenges remain including the ability to grow stem cells in vitro on a 3-dimensional scaffold, as well as their loss, by leakage or cell death, post-implantation. These issues could, however, be helped through the use of scaffolds that support the growth and differentiation of stem cells both in vitro and in vivo. The present study focuses on the use of bacterial cellulose as an in vitro scaffold to promote the growth of different stem cell-derived cell types. Bacterial cellulose was used because of its remarkable properties such as its wettability, ability to retain water and low stiffness, all of which is similar to that found in brain tissue. Methods We cultured human embryonic stem cell-derived progenitor cells on bacterial cellulose with growth factors that were covalently functionalised to the surface via silanisation. Epifluorescence microscopy and immunofluorescence were used to detect the differentiation of stem cells into dopaminergic ventral midbrain progenitor cells. We then quantified the proportion of cells that differentiated into progenitor cells and compared the effect of growing cells on biofunctionalised cellulose versus standard cellulose. Results We show that the covalent functionalisation of bacterial cellulose sheets with bioactive peptides improves the growth and differentiation of human pluripotent stem cells into dopaminergic neuronal progenitors. Conclusions This study suggests that the biocompatible material, bacterial cellulose, has potential applications in cell therapy approaches as a means to repair damage to the central nervous system, such as in Parkinson’s disease but also in tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document