LONG-TERM TRENDS IN COSMIC RAYS AND GEOMAGNETIC FIELD SECULAR VARIATIONS

2021 ◽  
Vol 44 ◽  
pp. 79-80
Author(s):  
A.G. Elias ◽  
◽  
B.S. Zossi ◽  
A.R. Gutierrez Falcon ◽  
E.S. Comedi ◽  
...  

Cosmic rays are modulated by solar and geomagnetic activity. In addition, the flux that arrives to the Earth is sensitive to the inner geomagnetic field through its effect on the geomagnetic cutoff rigidity, Rc. This field has been decaying globally at a rate of ~5% per century from at least 1840. However, due to its configuration and non-uniform trend around the globe, its secular variation during the last decades has induced negative and positive Rc trends depending on location. In the present work, the database from the World Data Center for Cosmic Rays (WDCCR) is used to analyze long-term trend variations linked to geomagnetic secular variations. This database includes more than 100 stations covering, some of them, almost seven decades since the 1950’s. Those stations spanning more than 20 years of data are selected for the present study in order to adequately filter solar activity effects.

Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 704-718 ◽  
Author(s):  
Paul E Damon ◽  
Songlin Cheng ◽  
Timothy W Linick

The coarse structure of the 14C spectrum consists of a secular trend curve that may be closely fit by a sinusoidal curve with period ca 11,000 yr and half amplitude ±51. This long-term trend is the result of changes in the earth's geomagnetic dipole moment. Consequently, it modulates solar components of the 14C spectrum but does not appear to modulate a component of the spectrum of ca 2300-yr period. The ca 2300-yr period is of uncertain origin but may be due to changes in climate because it also appears in the δ18O spectrum of ice cores. This component strongly modulates the well-known ca 200-yr period of the spectrum's fine structure. The hyperfine structure consists of two components that fluctuate with the 11-yr solar cycle. One component results from solar-wind modulation of the galactic cosmic rays and has a half-amplitude of ca ±1.5. The other component is the result of 14C production by solar cosmic rays that arrive more randomly but rise and fall with the 11-yr cycle and appear to dominate the fluctuation of the galactic cosmic-ray-produced component by a factor of two.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 40
Author(s):  
Ana G. Elias ◽  
Blas F. de Haro Barbas ◽  
Bruno S. Zossi ◽  
Franco D. Medina ◽  
Mariano Fagre ◽  
...  

The Earth’s ionosphere presents long-term trends that have been of interest since a pioneering study in 1989 suggesting that greenhouse gases increasing due to anthropogenic activity will produce not only a troposphere global warming, but a cooling in the upper atmosphere as well. Since then, long-term changes in the upper atmosphere, and particularly in the ionosphere, have become a significant topic in global change studies with many results already published. There are also other ionospheric long-term change forcings of natural origin, such as the Earth’s magnetic field secular variation with very special characteristics at equatorial and low latitudes. The ionosphere, as a part of the space weather environment, plays a crucial role to the point that it could certainly be said that space weather cannot be understood without reference to it. In this work, theoretical and experimental results on equatorial and low-latitude ionospheric trends linked to the geomagnetic field secular variation are reviewed and analyzed. Controversies and gaps in existing knowledge are identified together with important areas for future study. These trends, although weak when compared to other ionospheric variations, are steady and may become significant in the future and important even now for long-term space weather forecasts.


2008 ◽  
Vol 26 (8) ◽  
pp. 2069-2080 ◽  
Author(s):  
N. B. Gudadze ◽  
G. G. Didebulidze ◽  
L. N. Lomidze ◽  
G. Sh. Javakhishvili ◽  
M. A. Marsagishvili ◽  
...  

Abstract. Long-term observations of total nightglow intensity of the atomic oxygen red 630.0 nm line at Abastumani (41.75° N, 42.82° E) in 1957–1993 and measurements of the ionosphere F2 layer parameters from the Tbilisi ionosphere station (41.65° N, 44.75° E) in 1963–1986 have been analyzed. It is shown that a decrease in the long-term trend of the mean annual red 630.0 nm line intensity from the pre-midnight value (+0.770±1.045 R/year) to its minimum negative value (−1.080±0.670 R/year) at the midnight/after midnight is a possible result of the observed lowering of the peak height of the ionosphere F2 layer electron density hmF2 (−0.455±0.343 km/year). A theoretical simulation is carried out using a simple Chapman-type layer (damping in time) for the height distribution of the F2 layer electron density. The estimated values of the lowering in the hmF2, the increase in the red line intensity at pre-midnight and its decrease at midnight/after midnight are close to their observational ones, when a negative trend in the total neutral density of the upper atmosphere and an increase in the mean northward wind (or its possible consequence – a decrease in the southward one) are assumed.


2009 ◽  
Vol 2 (2) ◽  
pp. 1075-1097
Author(s):  
A. Sarkissian ◽  
J. Slusser

Abstract. Water vapor total column measurements at Observatoire de Haute Provence (5°42' E, +43°55' N), south of France, were obtained using observations of astronomical objects made between July 1994 and December 2004 on the 193-cm telescope with the high-resolution spectrometer Elodie. Spectra of stars, nebulae, and other astronomical objects were taken regularly during 10 years. More than 18 000 spectra from 400 nm to 680 nm are available on-line in the Elodie Archive. This archive, usually explored by astronomers, contains information to study the atmosphere of the Earth. Water vapor absorption lines appear in the visible in delimited bands that astronomers often avoid for their spectral analysis. We used the Elodie Archive with two objectives: firstly, to retrieve seasonal variability and long-term trend of atmospheric water vapor, and secondly, to remove signatures in spectra for further astronomical or geophysical use. The tools presented here are developed following, when possible, formats and standards recommended by the International Virtual Observatory Alliance.


2002 ◽  
Vol 17 (12n13) ◽  
pp. 1645-1653
Author(s):  
MARINA GIBILISCO

In this work, I study the propagation of cosmic rays inside the magnetic field of the Earth, at distances d ≤ 500 Km from its surface; at these distances, the geomagnetic field deeply influences the diffusion motion of the particles. I compare the different effects of the interplanetary and of the geomagnetic fields, by also discussing their role inside the cosmic rays transport equation; finally, I present an analytical method to solve such an equation through a factorization technique.


2008 ◽  
Vol 26 (5) ◽  
pp. 1199-1206 ◽  
Author(s):  
A. D. Danilov

Abstract. The data from the vertical ionospheric sounding for 12 stations over the world were analyzed to find the relation between the values of foF2 for 02:00 LT and 14:00 LT of the same day. It is found that, in general, there exists a negative correlation between foF2(02) and foF2(14). The value of the correlation coefficient R(foF2) can be in some cases high enough and reach minus 0.7–0.8. The value of R(foF2) demonstrates a well pronounced seasonal variations, the highest negative values being observed at the equinox periods of the year. It is also found that R(foF2) depends on geomagnetic activity: the magnitude of R(foF2) is the highest for the choice of only magnetically quiet days (Ap<6), decreasing with the increase of the limiting value of Ap. For a fixed limitation on Ap, the value of R(foF2) depends also on solar activity. Apparently, the effects found are related to thermospheric winds. Analysis of long series of the vertical sounding data shows that there is a long-term trend in R(foF2) with a statistically significant increase in the R(foF2) magnitude after about 1980. Similar analysis is performed for the foF2(02)/foF2(14) ratio itself. The ratio also demonstrates a systematic trend after 1980. Both trends are interpreted in terms of long-term changes in thermospheric circulation.


Radiocarbon ◽  
1980 ◽  
Vol 22 (2) ◽  
pp. 133-158 ◽  
Author(s):  
Giuliana Castagnoli ◽  
Devendra Lal

This paper is concerned with the expected deviations in the production rate of natural 14C on the earth due to changes in solar activity. We review the published estimates of the global production rates of 14C due to galactic and solar cosmic ray particles, and present new estimates of the expected secular variations in 14C production, taking into account the latest information available on galactic cosmic ray modulation and long-term variations in solar activity.


2020 ◽  
Author(s):  
Sei-Him Cheong ◽  
Stephen P Robinson ◽  
Peter M Harris ◽  
Lian S Wang ◽  
Valerie Livina

&lt;p&gt;Underwater noise is recognised as a form of marine pollutant and there is evidence that over exposure to excessive levels of noise can have effects on the wellbeing of the marine ecosystem. Consequently, the variation in the ambient sound levels in the deep ocean has been the subject of a number of recent studies, with particular interest in the identification of long-term trends. We describe a statistical method for performing long-term trend analysis and uncertainty evaluation of the estimated trends from deep-ocean noise data. This study has been extended to include &amp;#160;measured data&amp;#160; from four monitoring stations located in the Indian (Cape Leeuwin &amp; Diego Garcia), Pacific (Wake Island) and Southern Atlantic (Ascension Islands) Oceans over periods spanning between 8 to 15 years. The data were obtained from the hydro-acoustic monitoring stations of the Preparatory Commission for the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). The monitoring stations provide information at a sampling frequency of 250 Hz, leading to very large datasets, and at acoustic frequencies up to 105 Hz.&lt;/p&gt;&lt;p&gt;The analysis method uses a flexible discrete model that incorporates terms that capture seasonal variations in the data together with a moving-average statistical model to describe the serial correlation of residual deviations. The trend analysis is applied to time series representing daily aggregated statistical levels for four frequency bands to obtain estimates for the change in sound pressure level (SPL) over the examined period with associated coverage intervals. The analysis demonstrates that there are statistically significant changes in the levels of deep-ocean noise over periods exceeding a decade. The main features of the approach include (a) using a functional model&amp;#160; with terms&amp;#160; that represent both long-term and seasonal behaviour of deep-ocean noise, (b) using a statistical model to capture the serial correlation of the residual deviations that are not explained by the functional model, (c) using daily aggregation intervals derived from 1-minute &amp;#160;sound pressure level averages, and (d) applying a non-parametric approach to validate the uncertainties of the trend estimates that avoids the need to make an assumption about the distribution of the residual deviations.&lt;/p&gt;&lt;p&gt;The obtained results show the long term trends vary differently at the four stations. It was observed that low frequency noise generally dominated the significant trends in these oceans. The relative differences between the various statistical levels are remarkably similar for all the frequency bands. Given the complexity of the acoustic environment, it is difficult to identify the main causes of these trends. Some possible explanations for the observed trends are discussed. It was however observed some stations are subjected to strong seasonal variation with a high degree of correlation with climatic factors such as sea surface temperature, Antarctic ice coverage and wind speed. The same seasonal effects is less pronounced in station located closer to the equator.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document