Regulation of Balance After Spinning: A Comparison Between Figure Skaters and Controls

Author(s):  
Cadence M Baker ◽  
Gordon E Barkwell

Introduction: The purpose of the present study was to compare the balance performance of control subjects and varsity figure skaters after spinning on a turntable for 6 seconds. It was hypothesized figure skaters would demonstrate better balance control after spinning. Methods: 9 female figure skaters and 9 female control subjects stood as still as possible for 15 seconds on a Kistler force plate during both a control condition and after spinning for 6 seconds on a turntable. Balance performance was quantified by the percentage of total time the center of pressure (CoP) was within a 5mm radius of the center of their base of support (BoS). Results: In the control condition, figure skaters and control participants did not have significantly different balance ability. In the post-spin condition, figure skaters were significantly better at maintaining their CoP within a smaller area. Conclusions: These results are valuable from a training and coaching perspective because they suggest that balance performance after spinning can be improved with training.

2020 ◽  
Vol 24 (1) ◽  
pp. 19-23
Author(s):  
Juhi K. Bharnuke ◽  
Rajani P. Mullerpatan ◽  
Claire Hiller

Indian classical dance involves a constant change of the base of support from stance to low jumps and spins along with intricate footwork. Graceful movement of the torso, shifting from side to side and turning around the axis of the spine, challenges balance. Yet, balance performance remains unexplored in Indian classical dancers. Therefore, the present study aimed to compare the standing balance of 36 active female dancers (18 to 25 years of age) who had performed Indian classical dance for a minimum of 10 years with 36 healthy age-matched women not involved in regular physical activity. Balance was evaluated in static and dynamic conditions of single and dual-limb stance on a force plate using center-of-pressure trajectory and the Star Excursion Balance Test (SEBT). Dancers demonstrated better balance on both instrumented and non-instrumented outcome variables: wide base of support with eyes open and with eyes closed; for 30-second single limb stance with eyes open and with eyes closed; for 13-second dual task in single limb stance; and for 22-second dual task in wide base of support. The SEBT revealed significantly better balance performance of dancers in the three directions tested: anterior, posteromedial, and posterolateral. There was also a strength component of the study on which the dancers achieved significantly higher scores than controls for the three muscle groups tested (gastrocsoleus, gluteus medius, and quadriceps), which can be attributed to their training. These findings can be used to recommend classical dance training to achieve the dual purpose of deriving better balance and stronger bodies and maintaining the Indian dance heritage.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-4 ◽  
Author(s):  
Hossein Talebi ◽  
Mohammad Taghi Karimi ◽  
Seyed Hamid Reza Abtahi ◽  
Niloofar Fereshtenejad

Aims. Vestibular system is indicated as one of the most important sensors responsible for static and dynamic postural control. In this study, we evaluated static balance in patients with unilateral vestibular impairments.Materials and Methods. We compared static balance control using Kistler force plate platform between 10 patients with unilateral vestibular impairments and 20 normal counterparts in the same sex ratio and age limits (50±7). We evaluated excursion and velocity of center of pressure (COP) and path length in anteroposterior (AP) and mediolateral (ML) planes with eyes open and with eyes closed.Results. There was no significant difference between COP excursions in ML and AP planes between both groups with eyes open and eyes closed (pvalue > 0.05). In contrast, the difference between velocity and path length of COP in the mentioned planes was significant between both groups with eyes open and eyes closed (pvalue < 0.05).Conclusions. The present study showed the static instability and balance of patients with vestibular impairments indicated by the abnormal characteristics of body balance.


2020 ◽  
Vol 36 (3) ◽  
pp. 171-177
Author(s):  
Hananeh Younesian ◽  
Nader Farahpour ◽  
Mehrdokht Mazde ◽  
Martin Simoneau ◽  
Katia Turcot

Diabetes peripheral neuropathy (DPN) leads to balance impairment among diabetes mellitus (DM). The aims of this study were to (1) distinguish between DM patients who have/do not have DPN and to (2) compare quadriceps’ strength and balance performance of DM, DPN, and healthy groups. Fifteen healthy females and 33 females with type 2 diabetic patients participated. The electrodiagnostic method was used to classify diabetic patients into DM and DPN. A dynamometer was used to measure quadriceps’ strength. Single-leg standing on a force plate was also used to quantify participants’ balance. Smaller conduction velocity and amplitude and greater distal latency of all nerves were observed in the DPN compared with the DM in particular for sensory nerve. In DPN, conduction velocity was asymmetrical. The quadriceps’ strength of both legs in DPN and the right leg in DM was smaller than in the control group. The root mean square of the center of pressure was similar between DM and DPN. But it was larger in DPN than in the control group. DPN is associated with asymmetrical conduction velocity, smaller quadriceps’ strength, and weaker balance performance that is suggestive of higher risk of falling. Balance training is recommended for the DPN group during their rehabilitation to reduce their falling risk.


2019 ◽  
Vol 7 (3) ◽  
pp. 374-388 ◽  
Author(s):  
Peter Leinen ◽  
Thomas Muehlbauer ◽  
Stefan Panzer

The present study investigated if accumulated, advanced, regular soccer practice (balance-demanding exercise) compared to regular swim practice (non-balance–demanding exercise) induces a more pronounced functional specialization in postural control. Therefore, single-leg balance performance in sub-elite young soccer players (under 13 [U13]: n = 16; U15: n = 18; U19: n = 15), and sub-elite young swimmers (U13: n = 7; U15: n = 4; U19: n = 5) was tested in different balance task conditions (i.e., static and dynamic balance on firm and foam surface). All athletes practiced 3–10 times per week. Single-leg balance of the dominant and non-dominant leg was measured using a force plate. The standard deviation of the center of pressure displacements in anterior-posterior and medio-lateral directions were used as dependent variables. Irrespective of age groups and type of sport, the results failed to indicate significant leg differences in single-leg balance performance. The soccer players showed significant better single-leg balance performance in anterior-posterior direction in the dynamic balance test on the firm and foam surface compared to the swimmers. Functional specialization was accompanied by the type of sport but not by accumulated practice.


Author(s):  
Roxana Ramona Onofrei ◽  
Elena Amaricai ◽  
Oana Suciu ◽  
Vlad Laurentiu David ◽  
Andreea Luciana Rata ◽  
...  

Maintaining an upright posture while talking or texting on the phone is a frequent dual-task demand. Using a within-subjects design, the aim of the present study was to assess the impact of a smartphone conversation or message texting on standing plantar pressure and postural balance performance in healthy young adults. Thirty-five subjects (mean age 21.37 ± 1.11 years) were included in this study. Simultaneous foot plantar pressure and stabilometric analysis were performed using the PoData system, under three conditions: no phone (control), talking on a smartphone (talk) and texting and sending a text message via a smartphone (text). Stabilometric parameters (center of pressure (CoP) path length, 90% confidence area and maximum CoP speed) were significantly affected by the use of different smartphone functions (p < 0.0001). The CoP path length and maximum CoP speed were significantly higher under the talk and text conditions when compared to the control. CoP path length, 90% confidence area and maximum CoP speed were significantly increased in talk compared to text and control. Talking on the phone also influenced the weight distribution on the left foot first metatarsal head and heel as compared with message texting. Postural stability in healthy young adults was significantly affected by talking and texting on a smartphone. Talking on the phone proved to be more challenging.


Author(s):  
Markus Santoso ◽  
David Phillips

Users sometimes lost their balance or even fell down when they played virtual reality (VR) games or projects. This may be attributed to degree of content, high-rate of latency, coordination of various sensory inputs, and others. The authors investigated the effect of sudden visual perturbations on human balance in VR environment. This research used the latest VR head mounted display to present visual perturbations to disturb balance. To quantify balance, measured by double-support and single-support stance, the authors measured the subject's center of pressure (COP) using a force plate. The results indicated that visual perturbations presented in virtual reality disrupted balance control in the single support condition but not in the double support condition. Results from this study can be applied to clinical research on balance and VR environment design.


2012 ◽  
Vol 37 (1) ◽  
pp. 76-84 ◽  
Author(s):  
Arezoo Eshraghi ◽  
Nader Maroufi ◽  
Mohammad Ali Sanjari ◽  
Hassan Saeedi ◽  
Mohammad Reza Keyhani ◽  
...  

Background: Biomechanical factors, such as spinal deformities can result in balance control disorders. Objectives: The purpose of this study was to examine the effect of bracing on static and dynamic balance control of hyperkyphotic female adolescents. Study Design: Clinical trial. Methods: A force platform was employed to record center of pressure (COP) parameters. Ten adolescents undergoing Milwaukee brace for hyperkyphosis and 14 normal subjects participated in the study. The COP data were collected with and without brace immediately on first day and after 120 days of continuous brace wear. Results: No significant difference was found in dynamic and static balance tests with and without brace on the first day ( P > 0.05). After 120 days, the values of COP displacement in functional reach to the right and left for the hyperkyphotic adolescents when performing without brace enhanced significantly compared to the first day. The forward reach distance was not significantly different between the normal and hyperkyphotic subjects ( P = 0.361); however, hyperkyphotic participants had significantly smaller reach distance in the functional reach to the right (21.88 vs. 25.56cm) and left (17.04 vs. 21.25cm). Conclusion: It might be concluded that bracing had a possible effect on improvement of dynamic balance performance, because the subjects could reach the target in dynamic reach tests with higher displacement in sagittal plane without losing their balance control. Clinical relevance Little is known about the biomechanical aspects of brace wear in individuals with hyperkyphosis. This study investigated balance differences between the healthy and hyperkyphotic individuals, and outcomes of Milwaukee brace wear. It might provide some new insight into the conservative treatment of hyperkyphosis for clinicians and researchers.


Author(s):  
Dorota Borzucka ◽  
Krzysztof Kręcisz ◽  
Zbigniew Rektor ◽  
Michał Kuczyński

Abstract Background The aim of this study was to compare the postural control of the Poland national women’s volleyball team players with a control group of non-training young women. It was hypothesized that volleyball players use a specific balance control strategy due to the high motor requirements of their team sport. Methods Static postural sway variables were measured in 31 athletes and 31 non-training women. Participants were standing on a force plate with eyes open, and their center of pressure signals were recorded for the 20s with the sampling rate of 20 Hz in the medial-lateral (ML) and anterior-posterior (AP) planes. Results In both AP and ML planes, athletes had lower range and higher fractal dimension of the COP. They had also higher peak frequency than control group in the ML plane only. The remaining COP indices including variability, mean velocity and mean frequency did not display any intergroup differences. Conclusion It can be assumed that due to the high motor requirements of their sport discipline Polish female volleyball players have developed a unique posture control. On the court they have to distribute their sensory resources optimally between balance control and actions resulting from the specifics of the volleyball game. There are no clearly defined criteria for optimal postural strategies for elite athletes, but they rather vary depending on a given sport. The results of our research confirm this claim. Trial registration The tests were previously approved by the Bioethical Commission of the Chamber of Physicians in Opole. (Resolution No. 151/13.12.2007). This study adheres to the CONSORT guidelines.


2020 ◽  
Vol 55 (5) ◽  
pp. 488-493 ◽  
Author(s):  
Robert C. Lynall ◽  
Kody R. Campbell ◽  
Timothy C. Mauntel ◽  
J. Troy Blackburn ◽  
Jason P. Mihalik

Context Researchers have suggested that balance deficiencies may linger during functional activities after concussion recovery. Objective To determine whether participants with a history of concussion demonstrated dynamic balance deficits as compared with control participants during single-legged hops and single-legged squats. Design Cross-sectional study. Setting Laboratory. Patients or Other Participants A total of 15 previously concussed participants (6 men, 9 women; age = 19.7 ± 0.9 years, height = 169.2 ± 9.4 cm, mass = 66.0 ± 12.8 kg, median time since concussion = 126 days [range = 28–432 days]) were matched with 15 control participants (6 men, 9 women; age = 19.7 ± 1.6 years, height = 172.3 ± 10.8 cm, mass = 71.0 ± 10.4 kg). Intervention(s) During single-legged hops, participants jumped off a 30-cm box placed at 50% of their height behind a force plate, landed on a single limb, and attempted to achieve a stable position as quickly as possible. Participants performed single-legged squats while standing on a force plate. Main Outcome Measure(s) Time to stabilization (TTS; time for the normalized ground reaction force to stabilize after landing) was calculated during the single-legged hop, and center-of-pressure path and speed were calculated during single-legged squats. Groups were compared using analysis of covariance, controlling for average days since concussion. Results The concussion group demonstrated a longer TTS than the control group during the single-legged hop on the nondominant leg (mean difference = 0.35 seconds [95% confidence interval = 0.04, 0.64]; F2,27 = 5.69, P = .02). No TTS differences were observed for the dominant leg (F2,27 = 0.64, P = .43). No group differences were present for the single-legged squat on either leg (P ≥ .11). Conclusions Dynamic balance-control deficits after concussion may contribute to an increased musculoskeletal injury risk. Given our findings, we suggest that neuromuscular deficits currently not assessed after concussion may linger. Time to stabilization is a clinically applicable measure that has been used to distinguish patients with various pathologic conditions, such as chronic ankle instability and anterior cruciate ligament reconstruction, from healthy control participants. Whereas the single-legged squat may not sufficiently challenge balance control, future study of the more dynamic single-legged hop is needed to determine its potential diagnostic and prognostic value after concussion.


2009 ◽  
Vol 23 (8) ◽  
pp. 847-854 ◽  
Author(s):  
Dorit Hyndman ◽  
Ruth M. Pickering ◽  
Ann Ashburn

Background. Cognitive motor interference has been linked to poor recovery and falls. Little is known about recovery of dual-task balance ability poststroke. Methods. In this experimental study, postural sway was examined while standing on a force plate in preferred stance, with feet together, and with eyes closed, at 6 and 12 months postdischarge from hospital. Sway was assessed in isolation and while participants performed a cognitive (shopping list) task. Results . Seventy-six people with stroke (mean age 67 years; range, 21-91 years) took part. Fifty-four completed both assessments. When compared with the single task, sway during the dual-task condition was significantly lower in both the medial lateral (ML) and anterior posterior (AP) directions (both P < .0001). Sway in both directions was influenced by the difficulty of the balance task (both P < .0001). There was a trend of reduced sway at the 12-month assessment compared with the 6-month assessment: significant only in the ML direction ( P = .0056). Repeat fallers swayed more than non—repeat fallers, with increases of 48% and 44% in the ML ( P = .0262) and AP ( P = .0134) directions, respectively. No significant variation in the dual-task reduction in sway was found: the dual-task effect was remarkably consistent over all the conditions tested, particularly in the AP direction. Conclusions. Sway decreased under dual-task conditions and changed as the difficulty of the balance task changed. Stroke fallers swayed more than nonfallers and there was evidence of a reduction in sway over time, particularly in the ML direction.


Sign in / Sign up

Export Citation Format

Share Document