scholarly journals A Combined Hot and Hypoxic Environment during Maximal Cycling Sprints Reduced Muscle Oxygen Saturation: A Pilot Study

2021 ◽  
pp. 684-689
Author(s):  
Keiichi Yamaguchi ◽  
Tomohiro Imai ◽  
Haruka Yatsutani ◽  
Kazushige Goto

The present study investigated the effects of a combined hot and hypoxic environment on muscle oxygenation during repeated 15-s maximal cycling sprints. In a single-blind, cross-over study, nine trained sprinters performed three 15-s maximal cycling sprints interspersed with 7-min passive recovery in normoxic (NOR; 23℃, 50%, FiO2 20.9%), normobaric hypoxic (HYP; 23℃, FiO2 14.5%), and hot normobaric hypoxic (HH; 35℃, FiO2 14.5%) environments. Relative humidity was set to 50% in all trials. The vastus lateralis muscle oxygenation was evaluated during exercise using near-infrared spectroscopy. The oxygen uptake (VO2) and arterial oxygen saturation (SpO2) were also monitored. There was no significant difference in peak or mean power output among the three conditions. The reduction in tissue saturation index was significantly greater in the HH (-17.0 ± 2.7%) than in the HYP (-10.4 ± 2.8%) condition during the second sprint (p < 0.05). The average VO2 and SpO2 were significantly lower in the HYP (VO2 = 980 ± 52 mL/min, SpO2 = 82.9 ± 0.8%) and HH (VO2 = 965 ± 42 mL/min, SpO2 = 83.2 ± 1.2%) than in the NOR (VO2 = 1149 ± 40 mL/min, SpO2 = 90.6 ± 1.4%; p < 0.05) condition. In conclusion, muscle oxygen saturation was reduced to a greater extent in the HH than in the HYP condition during the second bout of three 15-s maximal cycling sprints, despite the equivalent hypoxic stress between HH and HYP.

2019 ◽  
Vol 4 (2) ◽  
pp. 28
Author(s):  
Adeola A. Sanni ◽  
Kevin K. McCully

Near-infrared spectroscopy (NIRS) uses the relative absorption of light at 850 and 760 nm to determine skeletal muscle oxygen saturation. Previous studies have used the ratio of both signals to report muscle oxygen saturation. Purpose: The purpose of this pilot study is to assess the different approaches used to represent muscle oxygen saturation and to evaluate the pulsations of oxygenated hemoglobin/myoglobin (O2heme) and deoxygenated hemoglobin/myoglobin (Heme) signals. Method: Twelve participants, aged 20–29 years, were tested on the forearm flexor muscles using continuous-wave NIRS at rest. Measurements were taken during 2–3 min rest, physiological calibration (5 min ischemia), and reperfusion. Ten participants were included in the study analysis. Results: There was a significant difference in pulse size between O2heme and Heme signals at the three locations (p < 0.05). Resting oxygen saturation was 58.8% + 9.2%, 69.6% + 3.9%, and 89.2% + 6.9% when calibrated using O2heme, the tissue oxygenation/saturation index (TSI), and Heme, respectively. Conclusion: The difference in magnitude of O2heme and Heme pulses with each heartbeat might suggest different anatomical locations of these signals, for which calibrating with just one of the signals instead of the ratio of both is proposed. Calculations of physiological calibration must account for increased blood volume in the tissue because of the changes in blood volume, which appear to be primarily from the O2heme signal. Resting oxygen levels calibrated with Heme agree with theoretical oxygen saturation.


Author(s):  
Adeola A. Sanni ◽  
Kevin K. McCully

NIRS uses the relative absorption of light at 850nm and 760nm, to determine skeletal muscle oxygen saturation. Previous studies have used the ratio of both signals to report muscle oxygen saturation. Purpose: To evaluate the different approaches used to represent muscle oxygen saturation, and to evaluate the pulsations of the O2heme and Heme signal. Method: Twelve participants, ages 20-29years were tested on the forearm flexor muscles using continuous wave NIRS at rest. Measurements were taken during 2-3mins rest, during physiological calibration (5-minuts Ischemia) and during reperfusion.&nbsp; Results: There was a significant difference in pulse size between O2heme and Heme signal at the three locations (p &lt; 0.05). Resting oxygen saturation was 58.8+9.2%, 69.6+3.9%, and 89.2+6.9% when calibrated using O2heme, TSI, and Heme, respectively.&nbsp; Conclusion: The difference in magnitude of O2heme and Heme pulse with each heartbeat might suggest different anatomical locations of these signals, which propose calibrating with just one of the signals instead of the ratio of both. Calculations of physiological calibration must account for increased blood volume in the tissue, because of the changes in blood volume which appear to be primarily from the O2heme signal. Resting oxygen levels calibrated with Heme agrees with theoretical oxygen saturation.


2021 ◽  
Vol 6 (6) ◽  
Author(s):  
Alireza Kamali ◽  
Sepideh Sarkhosh ◽  
Hosein Kazemizadeh

Objectives: The aim of this study was to compare sedative effects of dexmedetomidine and fentanyl with midazolam and fentanyl in patients undergoing bronchoscopy. Methods: This study was a double-blind randomized clinical trial that was performed on 92 patients who referred to Amir al Momenin Hospital in Arak for bronchoscopy and underwent ASA 1 or 2 underlying grading procedure. Patients were randomly divided into two groups of dexmedetomidine and fentanyl (D) midazolam and fentanyl (M). Primary vital signs including hypertension and arterial oxygen saturation were monitored and recorded. Then all patients were injected with 2 μg / kg fentanyl as a painkiller and after 3 minutes 30 μg dexmedetomidine in syringe with code A and midazolam 3 mg in syringe with code B were injected to patients by an anesthesiologist. Then the two groups were compared in terms of pain at injection, conscious relaxation, satisfaction of operation, recovery time, hypotension and arterial oxygen saturation and drug side effects and data were analyzed by using statistical tests. Results: There was no significant difference between the two groups in terms of mean age and sex distribution. According to the results of this study, there was no significant difference between the two groups in mean blood pressure (P-value = 0.6) and mean heart rate (P-value = 0.4) at the time of bronchoscopy, but at 5 and 10 minutes after bronchoscopy there was a significant difference, mean blood pressure and heart rate were significantly lower in dexmedetomidine group. Conclusion: Both dexmedetomidine and midazolam drug groups contributed to the development of stable and sedative hemodynamics and satisfaction in patients undergoing bronchoscopy, however, the dexmedetomidine and fentanyl group showed a significant decrease in blood pressure and heart rate compared to midazolam and fentanyl and a weaker decrease in arterial oxygen saturation, and patients with bronchoscopy were more satisfied in the dexmedetomidine group.


Children ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 205
Author(s):  
Marlies Bruckner ◽  
Lukas P. Mileder ◽  
Alisa Richter ◽  
Nariae Baik-Schneditz ◽  
Bernhard Schwaberger ◽  
...  

Body temperature (BT) management remains a challenge in neonatal intensive care, especially during resuscitation after birth. Our aim is to analyze whether there is an association between the BT and cerebral and peripheral tissue oxygen saturation (crSO2/cTOI and prSO2), arterial oxygen saturation (SpO2), and heart rate (HR). The secondary outcome parameters of five prospective observational studies are analyzed. We include preterm and term neonates born by Caesarean section who received continuous pulse oximetry and near-infrared spectroscopy monitoring during the first 15 min, and a rectal BT measurement once in minute 15 after birth. Four-hundred seventeen term and 169 preterm neonates are included. The BT did not correlate with crSO2/cTOI and SpO2. The BT correlated with the HR in all neonates (ρ = 0.210, p < 0.001) and with prSO2 only in preterm neonates (ρ = −0.285, p = 0.020). The BT was lower in preterm compared to term infants (36.7 [36.4–37.0] vs. 36.8 [36.6–37.0], p = 0.001) and prevalence of hypothermia was higher in preterm neonates (29.5% vs. 12.0%, p < 0.001). To conclude, the BT did not correlate with SpO2 and crSO2/cTOI, however, there was a weak positive correlation between the BT and the HR in the whole cohort and a weak correlation between the BT and prSO2 only in preterm infants. Preterm neonates had a statistically lower BT and suffered significantly more often from hypothermia during postnatal transition.


2021 ◽  
Vol 22 ◽  
Author(s):  
Yuanyuan Gao ◽  
Fei Yan

Background: The effectiveness and side effects of dexmedetomidine (DEX) in combination with midazolam and propofol have not been comparatively studied in a single clinical trial as sedative agents to general anesthesia before. Objective: The objective of this study is to compare intra and post-operative sedation between DEX-Midazolam and DEX-Propofol in patients who underwent major abdominal surgery on the duration of general anesthesia, hemodynamic and sedation effect. Method: This prospective, randomized, double-blinded clinical trial included 50 patients who were 20 to 60 years of age and admitted for major abdominal surgery. The patients were randomly assigned by a computer-generated random numbers table to sedation with DEX plus midazolam (DM group) (n=25) or DEX plus propofol (DP group) (n=25). In the DM group, patients received a bolus dose of 0.1 mg/kg of midazolam and immediately initiated the intravenous (i.v.) infusion of DEX 1 µg/kg over a 10 min and 0.5 µg/kg/hr by continuous i.v. infusion within operation period. In the DP group, patients received pre-anesthetic i.v. DEX 1 µg/kg over 15 min before anesthesia induction and 0.2-1 µg/kg/hr by continuous i.v. infusion during the operative period. After preoxygenation for at least 2 min, during the surgery, patients received propofol infusion dose of 250 μg/kg/min for 15 min then a basal infusion dose of 50 μg/kg/min. The bispectral index (BIS) value, as well as mean arterial pressure (MAP), heart rate (HR), respiratory rate (RR), oxygen saturation (SaO2), percutaneous arterial oxygen saturation (SpO2) and end-tidal carbon dioxide tension (ETCO2) were recorded before anesthesia (T0), during anesthesia (at 15-min intervals throughout the surgical procedure), by a blinded observer. Evidence of apnea, hypotension, hypertension and hypoxemia were recorded during surgery. Results: The hemodynamic changes, including HR, MAP, BIS, VT, SaO2, and RR had a downward tendency with time, but no significant difference was observed between the groups (P>0.05). However, the two groups showed no significant differences in ETCO2 and SPO2 values in any of the assessed interval (P>0.05). In this study, the two groups showed no significant differences in the incidence of nausea, vomiting, coughing, apnea, hypotension, hypertension, bradycardia and hypoxemia (P>0.05). Respiratory depression and Conclusion: Our study showed no significant differences between the groups in hemodynamic and respiratory changes in each of the time intervals. There were also no significant differences between the two groups in the incidence of complication intra and post-operative. Further investigations are required to specify the optimum doses of using drugs which provide safety in cardiovascular and respiratory system without adverse disturbance during surgery.


2021 ◽  
pp. 1-9
Author(s):  
Aslinur Sircan-Kucuksayan ◽  
Oktay Eray ◽  
Murat Buyukaksu ◽  
Birce Gumus ◽  
Oguz Dursun ◽  
...  

BACKGROUND: Venous oxygen saturation reflects venous oxygenation status and can be used to assess treatment and prognosis in critically ill patients. A novel method that can measure central venous oxygen saturation (ScvO2) non-invasively may be beneficial and has the potential to change the management routine of critically ill patients. OBJECTIVE: The study aims to evaluate the potential of sublingual venous oxygen saturation (SsvO2) to be used in the estimation of ScvO2. METHODS: We have developed two different approaches to calculate SsvO2. In the first one, near-infrared spectroscopy (NIRS) measurements were performed directly on the sublingual veins. In the second approach, NIRS spectra were acquired from the sublingual tissue apart from the sublingual veins, and arterial oxygen saturation was measured using a pulse oximeter on the fingertip. RESULTS: Twenty-six healthy subjects were included in the study. In the first and second approaches, average SsvO2 values were 75.0% ± 1.8 and 75.8% ± 2.1, respectively. The results of the two different approaches were close to each other and similar to ScvO2 of healthy persons (> 70%). CONCLUSION: Oxygen saturation of sublingual veins has the potential to be used in intensive care units, non-invasively and in real-time, to estimate ScvO2.


2008 ◽  
Vol 33 (4) ◽  
pp. 743-752 ◽  
Author(s):  
Sirous Ahmadi ◽  
Peter J. Sinclair ◽  
Nasim Foroughi ◽  
Glen M. Davis

Eccentric exercise (EE), a common type of muscular activity whereby muscles lengthen and contract simultaneously, is associated with higher levels of force but may also evoke muscle damage. We investigated the hypothesis that unaccustomed EE might impair muscle oxygenation and muscle blood flow in healthy adults. Ten healthy males performed a bout of 70 maximal eccentric contractions of the elbow flexors. Before and after EE on day 1 and over the next 6 days, maximum voluntary isometric torque (MVT), serum creatine kinase (CK), and the changes in muscle oxygen saturation, blood flow, and oxygen uptake (using near-infrared spectroscopy) within the biceps brachii were assessed. MVT decreased, whereas muscle soreness and CK increased after EE (p < 0.05). Mean resting oxygen saturation increased by 22% after acute EE, and remained elevated by 5%–9% for the following 6 days. During isometric contractions, significant decreases were observed in oxygen desaturation and re-saturation kinetics after EE and these declines were also significantly prevalent over the following 6 days. Both muscle blood flow and oxygen uptake increased significantly after acute EE, but recovered on the next day. This study revealed some prolonged alterations in muscle oxygenation at rest and during exercise after EE, which might be due to a decrease in muscle oxygen consumption, an increase in oxygen delivery, and (or) a combination of both. However, both oxygen consumption and blood flow recovered within 24 h after the eccentric exercise session, and therefore, the reason(s) for the changes in tissue oxygen saturation remain unknown.


1994 ◽  
Vol 77 (6) ◽  
pp. 2753-2760 ◽  
Author(s):  
C. E. Elwell ◽  
M. Cope ◽  
A. D. Edwards ◽  
J. S. Wyatt ◽  
D. T. Delpy ◽  
...  

Near-infrared spectroscopy was used to measure global cerebral blood flow and volume in 10 healthy adult volunteers. High- and low-cerebral blood flow compartments were detected with mean flows for all 10 subjects of 59 +/- 21 (SD) and 11 +/- 4 ml.100 g-1.min-1, respectively. The mean cerebral blood volume of the group was 2.85 +/- 0.97 ml/100 g. Analysis of spontaneous changes in the cerebral concentrations of oxyhemoglobin and deoxyhemoglobin demonstrated strong correlations between respiratory rate and the oscillation frequency of cerebral oxyhemoglobin concentration (r = 0.99) and arterial oxygen saturation (SaO2) (r = 0.99). An estimate of the mean cerebral oxygen saturation for all subjects averaged 59.4 +/- 12.4% when their mean SaO2 was 91.8 +/- 2.4% (equivalent to 67.6 +/- 13.8% at a normoxic SaO2 of 98%). These results demonstrate that near-infrared spectroscopy can be used as a noninvasive bedside technique for both qualitative and quantitative evaluation of cerebral hemodynamics and oxygenation in adults.


Author(s):  
T.M. Traub ◽  
R. Grabowski ◽  
K. Rais-Bahrami

Background: As neonates transition from a relatively hypoxic environment to extra-uterine life, arterial oxygen saturation dramatically increases. This transition occurs while most organs have not fully matured. The ability for immature tissue to adequately extract and utilize oxygen remains largely unknown. With the development of near-infrared spectroscopy (NIRS), measuring specific tissue oxygen saturation (StO2) noninvasively, clinicians can measure StO2 and determine if adequate tissue oxygenation is maintained. The objective of this study is to determine the relationships of NIRS brain and somatic autoregulation function to patients’ severity of illness. Methods: In this prospective cohort pilot study, after parental consent, neonates less than 34 weeks with arterial access, were enrolled. The FORE-SIGHT NIRS probe was placed on the forehead and abdominal wall for 24 hours. Continuous arterial blood pressure, SpO2 and cerebral and somatic NIRS were used to derive autoregulation function. Results: Data was obtained from 17 neonates (0.540 to 2.37 kg, gestation 23.0 to 33.2 weeks). The autoregulation function categorizes pressure passive index (PPI) values as good, borderline, or poor. For normal autoregulation function, PPI values tend to be low and fairly constant for a range of MAP. The PPI borderline zone is a hypothetical range of PPI values where autoregulation function transitions from good to poor. Conclusion: Our results show most premature neonates, as long as they maintained normal BP and systemic circulation can autoregulate cerebral perfusion. When BP are above or below the normal MAP for age, the neonate is at risk for losing brain and somatic autoregulation.


Sign in / Sign up

Export Citation Format

Share Document