scholarly journals Sterilizer Reliability Analysis Using Reliability Block Diagram Based on Failure Identification Through Fault Tree Analysis

Author(s):  
Syamsul Bahri ◽  
Fatimah Fatimah ◽  
Saifuddin Muhammad Jalil ◽  
Amri Amri ◽  
Muhammad Ilham

A sterilizer is a pressurized steam vessel used to boil palm oil. The condition of the sterilizer at PT .X often emits steam at the door and body of the stew. Throughout 2020, there were 12 critical components that were frequently damaged, such as ball valve, actuator, exhaust valve, packing door, elbow, condensate nozzle, liner, pipe, condensate valve, strainer valve, pipe flange, and packing flange. Fault Tree Analysis is an analysis tool that graphically translates the combinations of errors that cause system failures. Reliability Block Diagram is a diagramming method for showing how reliability components contribute to the success or failure of a complex system. Based on the results of the failure calculation using fault tree analysis, the probability of failure of the horizontal sterilizer component is the ball valve 12.2%, exhaust valve 10.9% actuator 6%, door packing 0.24%, elbow 0.24%, condensate nozzle 4.8%, liner 8.61%, 0.25% pipe, 0.21% condensate valve, 4.4% filter valve, 0.22% pipe flange and 0.27% packing flange. The reliability value of the horizontal sterilizer from the calculation using the reliability block diagram is 85.69% if it operates for 8 hours, 62.93% if it operates for 27 hours, 39.6% if it operates for 54 hours, 13.34% if it operates for 117 hours. o'clock. o'clock. o'clock. hours and 1.81% when operating for 234 hours. To maintain reliability above 60%, the preventive maintenance schedule is: Every 80 hours of operation a door packing inspection is carried out. Every 234 hours of operation, elbow tubing and flanges are checked. Every 300 hours of operation, a pipe inspection is carried out. Every 450 operational hours an inspection is carried out on the ball valve, condensate nozzle, liner, actuator, and exhaust valve. Every 30 hours of operation, valve condensate, filter valves and packing flanges are checked.

Author(s):  
Christoph Läsche ◽  
Jan Pinkowski ◽  
Sebastian Gerwinn ◽  
Rainer Droste ◽  
Axel Hahn

Safety and dependability are major design objectives for offshore operations such as the construction of wind farms or oil and gas exploration. Today processes and related risks are typically described informally and process specification are neither reusable nor suitable for risk assessment. Here, we propose to use a specification language for processes. We integrate this specification language in a generic modeling approach in combination with an analysis tool and a tool to construct health, safety and environment (HSE) plans — a mandatory document for granting a construction/operation permit. Specifically, for each planned scenario a process is modeled, describing the detailed operation of the involved actors as well as the interaction with resources and environmental conditions. We enrich this process model with hazardous events which is facilitated by integration with an offshore operation generic hazard list, thereby giving access to expert knowledge for the specific situation to be planned. This in turn allows us to perform an automatic quantitative risk assessment using fault tree analysis. We exemplify our approach on a standard offshore operation of personnel transfer from an offshore building to another naval unit by modeling, annotating with hazards, performing the fault-tree analysis, and finally generating HSE plans.


2018 ◽  
Vol 17 (01) ◽  
pp. 107-118 ◽  
Author(s):  
Hamed Fazlollahtabar ◽  
Seyed Taghi Akhavan Niaki

In this paper, minimal paths and cuts technique is developed to handle fault tree analysis (FTA) on the critical components of industrial robots. This analysis is integrated with the reliability block diagram (RBD) approach in order to investigate the robot system reliability. The model is implemented in a complex advanced manufacturing system having autonomous guided vehicles (AGVs) as material handling devices. FTA grants cause and effects and hierarchical properties to the model. On the other hand, RBD simplifies the complex system of the AGVs for reliability evaluation. The results show that due to the filtering of the paths in a manufacturing system for AGVs, the reliability is highly dependent on the mostly occupied paths by AGVs. The failure probability for the AGV is considered to follow the exponential probability distribution and thus the whole system reliability using minimal paths and cuts method is obtained 0.8741.


Author(s):  
Hamed Fazlollahtabar ◽  
Seyed Taghi Akhavan Niaki

Purpose This paper aims to conduct a comprehensive fault tree analysis (FTA) on the critical components of industrial robots. This analysis is integrated with the reliability block diagram (RBD) approach to investigate the robot system reliability. Design/methodology/approach For practical implementation, a particular autonomous guided vehicle (AGV) system was first modeled. Then, FTA was adopted to model the causes of failures, enabling the probability of success to be determined. In addition, RBD was used to simplify the complex system of the AGV for reliability evaluation purpose. Findings Hazard decision tree (HDT) was configured to compute the hazards of each component and the whole AGV robot system. Through this research, a promising technical approach was established, allowing decision-makers to identify the critical components of AGVs along with their crucial hazard phases at the design stage. Originality/value As complex systems have become global and essential in today’s society, their reliable design and determination of their availability have turned into very important tasks for managers and engineers. Industrial robots are examples of these complex systems that are being increasingly used for intelligent transportation, production and distribution of materials in warehouses and automated production lines.


Author(s):  
Yao Li ◽  
Frank PA Coolen

Due to the high failure rates and the high cost of operation and maintenance of wind turbines, not only manufacturers but also service providers try many ways to improve the reliability of some critical components and subsystems. In reality, redundancy design is commonly used to improve the reliability of critical components and subsystems. The load dependencies and failure dependencies among redundancy components and subsystems are crucial to the reliability assessment of wind turbines. However, the redundancy components are treated as a parallel system, and the load correlations among them are ignored in much literature, which may lead to the wrong system’s reliability and much higher costs. For this reason, this article explores the influences of load-sharing on system reliability. The whole system’s reliability is quantitatively evaluated using fault tree analysis and the Markov-chain method. Following this, the optimisation of the redundancy allocation problem considering the load-sharing is conducted to maximise the system reliability and reduce the total cost of the system subjecting to the available system cost and space. The results produced by this methodology can show a realistic reliability assessment of the entire wind turbine from a quantitative point of view. The realistic reliability assessment can help to design a cost-effective and more reliable system and significantly reduce the cost of wind turbines.


Author(s):  
Sofia K. Georgiadis

Fault Tree Analysis (FTA) is one of the key safety evaluation techniques used by New York City Transit (NYCT). First developed over 50 years ago, this technique continues to provide valuable insight for failure analysis of systems. Its use is widespread in safety-critical systems analysis across industry boundaries, including defense, nuclear, aerospace, chemical [1], and transportation industries. FTAs provide a systematic, top-down methodology to safety analysis. As such, it complements other safety analysis techniques, such as Failure Modes Effect Analysis (FMEA), which is a bottom-up failure analysis [2]. Formal Methods analyses, including Theorem Proving and Model Checking, are powerful development and analysis methodologies, both used by NYCT, that provide assurance of product’s correctness and safety. With these other safety analysis techniques, the FTA continues to play a key role in the NYCT Safety Program. This paper will examine how NYCT uses FTAs for the safety analysis of microprocessor-based signaling systems. FTAs are used by NYCT throughout the system lifecycle. Initially, during the system development phase, NYCT requires system suppliers to develop Fault Tree Analyses of their systems, as a requirement for NYCT safety certification and deployment. For the system maintenance phase, NYCT uses the outputs of suppliers’ analyses to develop and enforce maintenance and operational procedures. In this manner, NYCT’s use of FTA provides full lifecycle value by providing design, maintenance, and operational insight into the causes of hazardous events. Through the examination of example fault trees and an overview of the FTA process, this paper will present the NYCT’s implementation of this powerful analysis tool, and will describe the benefits gained from using this methodology.


Sign in / Sign up

Export Citation Format

Share Document