scholarly journals CROSS-WORLD PREDICATION: TYPE-THEORETICAL AND SET-THEORETICAL FORMALIZATION

Author(s):  
Олег Анатольевич Доманов

В статье описываются некоторые потенциальные проблемы теории кросс-мировой предикации Е. Борисова и предлагаются альтернативные формализации в терминах теории типов с зависимыми типами и теории множеств. Преимущество теоретико-типовой формализации состоит в её простоте, связанной с наличием в теории типов функций в зависимые типы. Преимущество предлагаемой теоретико-множественной формализации состоит в большей близости к традиционным подходам и отсутствии некоторых неинтуитивных следствий, таких как предикация по несуществующим объектам. The paper examines some potential problems of the theory of cross-world predication by E. Borisov and suggests alternative formalizations in terms of type theory with dependent types and set theory. The advantage of the type-theoretical formalization lies in its simplicity based on the presence of functions to dependent types. The advantage of the proposed set-theoretical formalization is a greater closeness to traditional approaches and the lack of some non-intuitive effects such as the predication on non-existing objects.

Author(s):  
Cesare Gallozzi

Abstract We introduce a family of (k, h)-interpretations for 2 ≤ k ≤ ∞ and 1 ≤ h ≤ ∞ of constructive set theory into type theory, in which sets and formulas are interpreted as types of homotopy level k and h, respectively. Depending on the values of the parameters k and h, we are able to interpret different theories, like Aczel’s CZF and Myhill’s CST. We also define a proposition-as-hproposition interpretation in the context of logic-enriched type theories. The rest of the paper is devoted to characterising and analysing the interpretations considered. The formulas valid in the prop-as-hprop interpretation are characterised in terms of the axiom of unique choice. We also analyse the interpretations of CST into homotopy type theory, providing a comparative analysis with Aczel’s interpretation. This is done by formulating in a logic-enriched type theory the key principles used in the proofs of the two interpretations. Finally, we characterise a class of sentences valid in the (k, ∞)-interpretations in terms of the ΠΣ axiom of choice.


1971 ◽  
Vol 36 (3) ◽  
pp. 414-432 ◽  
Author(s):  
Peter B. Andrews

In [8] J. A. Robinson introduced a complete refutation procedure called resolution for first order predicate calculus. Resolution is based on ideas in Herbrand's Theorem, and provides a very convenient framework in which to search for a proof of a wff believed to be a theorem. Moreover, it has proved possible to formulate many refinements of resolution which are still complete but are more efficient, at least in many contexts. However, when efficiency is a prime consideration, the restriction to first order logic is unfortunate, since many statements of mathematics (and other disciplines) can be expressed more simply and naturally in higher order logic than in first order logic. Also, the fact that in higher order logic (as in many-sorted first order logic) there is an explicit syntactic distinction between expressions which denote different types of intuitive objects is of great value where matching is involved, since one is automatically prevented from trying to make certain inappropriate matches. (One may contrast this with the situation in which mathematical statements are expressed in the symbolism of axiomatic set theory.).


2014 ◽  
Vol 24 (2-3) ◽  
pp. 316-383 ◽  
Author(s):  
PIERRE-ÉVARISTE DAGAND ◽  
CONOR McBRIDE

AbstractProgramming with dependent types is a blessing and a curse. It is a blessing to be able to bake invariants into the definition of datatypes: We can finally write correct-by-construction software. However, this extreme accuracy is also a curse: A datatype is the combination of a structuring medium together with a special purpose logic. These domain-specific logics hamper any attempt to reuse code across similarly structured data. In this paper, we capitalise on the structural invariants of datatypes. To do so, we first adapt the notion of ornament to our universe of inductive families. We then show how code reuse can be achieved by ornamenting functions. Using these functional ornaments, we capture the relationship between functions such as the addition of natural numbers and the concatenation of lists. With this knowledge, we demonstrate how the implementation of the former informs the implementation of the latter: The users can ask the definition of addition to be lifted to lists and they will only be asked the details necessary to carry on adding lists rather than numbers. Our presentation is formalised in the type theory with a universe of datatypes and all our constructions have been implemented as generic programs, requiring no extension to the type theory.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 432 ◽  
Author(s):  
Vilém Novák

In this paper, we will visit Rough Set Theory and the Alternative Set Theory (AST) and elaborate a few selected concepts of them using the means of higher-order fuzzy logic (this is usually called Fuzzy Type Theory). We will show that the basic notions of rough set theory have already been included in AST. Using fuzzy type theory, we generalize basic concepts of rough set theory and the topological concepts of AST to become the concepts of the fuzzy set theory. We will give mostly syntactic proofs of the main properties and relations among all the considered concepts, thus showing that they are universally valid.


1975 ◽  
Vol 40 (2) ◽  
pp. 221-229 ◽  
Author(s):  
William C. Powell

In [5] Gödel interpreted Peano arithmetic in Heyting arithmetic. In [8, p. 153], and [7, p. 344, (iii)], Kreisel observed that Gödel's interpretation extended to second order arithmetic. In [11] (see [4, p. 92] for a correction) and [10] Myhill extended the interpretation to type theory. We will show that Gödel's negative interpretation can be extended to Zermelo-Fraenkel set theory. We consider a set theory T formulated in the minimal predicate calculus, which in the presence of the full law of excluded middle is the same as the classical theory of Zermelo and Fraenkel. Then, following Myhill, we define an inner model S in which the axioms of Zermelo-Fraenkel set theory are true.More generally we show that any class X that is (i) transitive in the negative sense, ∀x ∈ X∀y ∈ x ¬ ¬ x ∈ X, (ii) contained in the class St = {x: ∀u(¬ ¬ u ∈ x→ u ∈ x)} of stable sets, and (iii) closed in the sense that ∀x(x ⊆ X ∼ ∼ x ∈ X), is a standard model of Zermelo-Fraenkel set theory. The class S is simply the ⊆-least such class, and, hence, could be defined by S = ⋂{X: ∀x(x ⊆ ∼ ∼ X→ ∼ ∼ x ∈ X)}. However, since we can only conservatively extend T to a class theory with Δ01-comprehension, but not with Δ11-comprehension, we will give a Δ01-definition of S within T.


2014 ◽  
Vol 25 (5) ◽  
pp. 1100-1115 ◽  
Author(s):  
BENNO VAN DEN BERG ◽  
IEKE MOERDIJK

We will give a detailed account of why the simplicial sets model of the univalence axiom due to Voevodsky also models W-types. In addition, we will discuss W-types in categories of simplicial presheaves and an application to models of set theory.


1991 ◽  
Vol 56 (4) ◽  
pp. 1496-1499 ◽  
Author(s):  
Craig A. Smoryński

Sign in / Sign up

Export Citation Format

Share Document