scholarly journals Molecular characterization and genetic diversity in some Egyptian wheat (Triticum aestivum L.) using microsatellite markers

10.5219/978 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 100-108
Author(s):  
Ayman El-Fiki ◽  
Mohamed Adly

<!-- /* Font Definitions */ @font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536870145 1107305727 0 0 415 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman",serif; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:SK; mso-fareast-language:SK;} p.MsoListContinue2, li.MsoListContinue2, div.MsoListContinue2 {mso-style-noshow:yes; mso-style-priority:99; margin-top:0cm; margin-right:0cm; margin-bottom:6.0pt; margin-left:28.3pt; mso-add-space:auto; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman",serif; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:SK; mso-fareast-language:SK;} p.MsoListContinue2CxSpFirst, li.MsoListContinue2CxSpFirst, div.MsoListContinue2CxSpFirst {mso-style-noshow:yes; mso-style-priority:99; mso-style-type:export-only; margin-top:0cm; margin-right:0cm; margin-bottom:0cm; margin-left:28.3pt; margin-bottom:.0001pt; mso-add-space:auto; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman",serif; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:SK; mso-fareast-language:SK;} p.MsoListContinue2CxSpMiddle, li.MsoListContinue2CxSpMiddle, div.MsoListContinue2CxSpMiddle {mso-style-noshow:yes; mso-style-priority:99; mso-style-type:export-only; margin-top:0cm; margin-right:0cm; margin-bottom:0cm; margin-left:28.3pt; margin-bottom:.0001pt; mso-add-space:auto; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman",serif; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:SK; mso-fareast-language:SK;} p.MsoListContinue2CxSpLast, li.MsoListContinue2CxSpLast, div.MsoListContinue2CxSpLast {mso-style-noshow:yes; mso-style-priority:99; mso-style-type:export-only; margin-top:0cm; margin-right:0cm; margin-bottom:6.0pt; margin-left:28.3pt; mso-add-space:auto; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman",serif; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:SK; mso-fareast-language:SK;} p.PotText, li.PotText, div.PotText {mso-style-name:Pot_Text; mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:"List Continue 2"; mso-style-link:"Pot_Text Char"; margin:0cm; margin-bottom:.0001pt; text-align:justify; mso-pagination:widow-orphan; tab-stops:5.65pt; font-size:10.0pt; font-family:"Times New Roman",serif; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:SK; mso-fareast-language:SK; mso-bidi-font-weight:bold;} span.PotTextChar {mso-style-name:"Pot_Text Char"; mso-style-unhide:no; mso-style-locked:yes; mso-style-parent:""; mso-style-link:Pot_Text; mso-ansi-font-size:10.0pt; mso-bidi-font-size:10.0pt; font-family:"Times New Roman",serif; mso-ascii-font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-hansi-font-family:"Times New Roman"; mso-bidi-font-family:"Times New Roman"; mso-ansi-language:SK; mso-fareast-language:SK; mso-bidi-font-weight:bold;} .MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} @page WordSection1 {size:612.0pt 792.0pt; margin:72.0pt 72.0pt 72.0pt 72.0pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.WordSection1 {page:WordSection1;} --> Wheat (Triticum aestivum L.) is the most important and strategic cereal crop in Egypt and has many bread wheat varieties. Seventeen Egyptian bread wheat varieties used in this study with a set of sixteen wheat microsatellite markers to examine their utility in detecting DNA polymorphism, estimating genetic diversity and identifying genotypes. A total of 190 alleles were detected at 16 loci using 16 microsatellite primer pairs. The number of allele per locus ranged from 8 to 20, with an average of 11.875. The polymorphic information content (PIC) and marker index (MI) average values were 0.8669, 0.8530 respectively. The (GA) n microsatellites were the highest polymorphic (20 alleles). The Jaccard's Coefficient for genetic similarity was ranged from 0.524 to 0.109 with average of 0.375. A dendrogram was prepared based on similarity matrix using UPGMA algorithm, divided the cultivars into two major clusters. The results proved the microsatellite markers utility in detecting polymorphism due to the discrimination of cultivars and estimating genetic diversity.

2012 ◽  
Vol 37 (3) ◽  
pp. 389-398 ◽  
Author(s):  
S Islam ◽  
MS Haque ◽  
RM Emon ◽  
MM Islam ◽  
SN Begum

A study was undertaken to examine the genetic diversity of 12 wheat (Triticum aestivum L.) genotypes, using 4 simple sequence repeats (SSRs). A total of 10 alleles were found. Allele number per locus ranged from 2 to 4 with an average of 2.5. The polymorphic information content (PIC) values ranged from 0.2755 to 0.5411 with an average of 0.3839. The average gene diversity over all SSR loci for the 12 wheat genotypes was 0.4688, ranging from 0.3299 to 0.6042. Cluster analysis based on microsatellite allelic diversity discriminated the varieties into different clusters. Genetic diversity was the highest between variety Gourab and Akbar as well as Gourab and BAW-1064, showing a genetic distance value of 0.4697. The genetic distance was lowest between Balaka and Aghrani as well as Triticale and BAW-1036. Positive correlations were found between gene diversity, number of alleles, the allele size range and the types of repeat motif of microsatellite markers. It was found from this study that microsatellite markers could characterize and discriminate all of the genotypes. More primers should be used for saturation of different regions in further studies. Bangladesh J. Agril. Res. 37(3): 389-398, September 2012 DOI: http://dx.doi.org/10.3329/bjar.v37i3.12082


2017 ◽  
Vol 16 (36) ◽  
pp. 1832-1839 ◽  
Author(s):  
Tekeu Honore ◽  
M. L. Ngonkeu Eddy ◽  
P. Djocgoue Francois ◽  
Ellis Aletta ◽  
Lendzemo Venasius ◽  
...  

2019 ◽  
Vol 11 (29) ◽  
pp. 9-16
Author(s):  
Nasrin Ghasemi ◽  
Reza Gholi Mirfakhraii ◽  
Alireza Abbasi ◽  
◽  
◽  
...  

Genetika ◽  
2020 ◽  
Vol 52 (3) ◽  
pp. 943-956
Author(s):  
Ibrahem Almohisen

Almohisen A. Ibrahem (2020). Genetic variability and population structure of Saudi Arabia bread wheat (Triticum aestivum L.) by microsatellite markers- Genetika, Vol 52, No.3, 943-956. Wheat (Triticum aestivum L.) is an important cereal crop. Analysis of genetic diversity and population structure in local landraces would improve the wheat breeding program by more efficient use of genetic materials and management of genetic variation. To address this challenge, a set of thirteen Saudi Arabia wheat landraces was used to assess population structure and genetic diversity. Thirteen landraces were genotyped using eighteen microsatellite markers which revealed a clear polymorphism among these genotypes. In total, 136 alleles from a set of eighteen simple sequence repeats (SSRs) loci on a panel of thirteen wheat landraces were detected. All SSRs loci showed a wide range of allele numbers extended from 3 to 11 alleles with an average of 7.5. Genetic diversity, polymorphism information content and minor allele frequency ranged from 0.26 to 0.50, 0.23 to 0.37 and 0.15 to 0.46 with an average 0.43, 0.33 and 0.34, respectively. The results of principal coordinate analysis (PCoA) agreed with the structure analysis. Structure grouped the thirteen landraces into three clear subpopulations. The fixation index (Fst), a measure of population substructure, was 0.217, 0.432 and 0.541 for G2, G1, and G3, respectively. Furthermore, analysis of molecular variance recognized 35% variance among and 65% within populations. The present study showed a high genetic diversity between landraces which can be exploited to produce new bread wheat cultivars.


2017 ◽  
Vol 43 (6) ◽  
pp. 445-449
Author(s):  
A. G. Klykov ◽  
I. V. Konovalova ◽  
P. M. Bogdan ◽  
D. M. Shadrin ◽  
Czuimei Zhang ◽  
...  

2009 ◽  
Vol 60 (4) ◽  
pp. 373 ◽  
Author(s):  
Neelu Jain ◽  
Rajbir Yadav

Bread wheat (Triticum aestivum L.) is the most widely grown crop in the world, and India is the second largest wheat producer after China. Introduction of input-responsive, semi-dwarf varieties set the foundation for the green revolution in the mid-1960s. To meet the future challenge of increasing food production with a shrinking land base, new varieties with higher yield potential and increased yield stability have to be developed by using the diverse genetic resource. The objective of this study was to evaluate genetic diversity in 74 wheat genotypes including released varieties in India occupying the pre-green revolution period (before 1965) and post-green revolution period (after 1965) and land races with microsatellite markers. SSRs represent a powerful tool to quantify genetic diversity in wheat. In total, 170 alleles were detected with an average of 3.3 alleles per locus. Overall, 24 rare alleles were present and 11 unique alleles were found in the studied landraces only. A positive correlation was found between the number of alleles and genetic diversity. Genetic relationships as determined by UPGMA (NTSYS-pc) and structure analyses grouped all modern wheat cultivars under one node. The traditional tall varieties released during the pre-green revolution era were clustered along with some of the landraces, indicating that they had possibly been developed through selection among the landraces. Diversity among the released varieties in the post-green revolution era has widened rather than narrowing down. Molecular variance analysis showed that variance was mainly distributed within (91.9%) rather than among (8.01%) the bread wheat varieties and landraces. The diversity obtained within the landraces proves them to be an important reservoir of biodiversity and source of novel alleles for use in breeding programs. Landraces such as MPG 62 and MPG 82 can be used for introgressing rare and unique alleles in the genetic background of high-yielding varieties.


2020 ◽  
Vol 8 (3) ◽  
pp. 80-87
Author(s):  
Yousif M. Fattah ◽  
Nergiz N. Tayib

Wheat (Triticum spp.) is one of the most important cereal crops in Iraq and the world. It includes many species and varieties.  The two major cultivated species of wheat are, durum wheat (Tritium durum Desf.) which is tetraploid (2n= 28) and the common wheat (Triticum aestivum L.) which is hexaploid (2n = 42). Ten wheat varieties from both species were examined using ten Simple   sequence repeat (SSR) markers (WMC17, WMC20, WMC21, WMC24, WMC25, WMC48, WMC50, WMC283, Xgwm11 and Xgwm626). Various genetic parameters were calculated using Power Marker V3.25 software. A total of 156 alleles were detected in both species. The gene diversity in wheat varieties from both species collectively varied from 0.85 to 1.00, which indicates considerable genetic diversity in the examined varieties. All markers used in this study were highly informative and the polymorphic information content (PIC) values were higher than 0.50 in all loci. Hence all markers are considered useful for genetic diversity studies in wheat’s populations. The dendrogram separated the populations into two main clades and many subgroups. Azadi variety was simplicifolious. This study confirms the discriminating power of SSR typing and its usefulness for comparison within hard and soft wheat populations. 


2016 ◽  
Vol 11 ◽  
Author(s):  
Lisetta Ghiselli ◽  
Eleonora Rossi ◽  
Anne Whittaker ◽  
Giovanni Dinelli ◽  
Adriano Pasqualino Baglio ◽  
...  

Bread wheat (<em>Triticum aestivum</em> L.) is an important cereal in human consumption. In recent years, there has been a growing interest in ancient wheat varieties. The latter represent an important source of germplasm, characterized by a broader genetic base and, therefore, a potential source of biodiversity. The objective of the study was to ascertain the optimal balance between the presence of secondary metabolites having beneficial effects on health and technological features that ensure successful baking quality. The experimental trial was performed in 2011-2012 on three organic farms located in three different areas within the province of Siena (Tuscany). In each location, an overall evaluation of the commercial, rheological and functional properties of five ancient Tuscan bread wheat varieties (Andriolo, Frassineto, Gentil rosso, Inallettabile 96, Verna) as compared with a commercial modern variety (Palesio) was carried out. The ancient varieties were compared both singularly (pure) and in combination (mixtures) of two varieties in equal proportion, respectively. Biometric and productive parameters were detected for each plot (32 plots in each farm). Macro- and trace elements, polyphenols, flavonoids and antioxidant activity (ARP) were similarly determined on representative whole grain samples. Rheological analysis was carried out on flour samples. The multivariate statistical analysis using principal components (PC) analysis was performed on all variables analysed. The results showed a significant environment effect on the different parameters measured and did not reveal significant improvements in the variables measured when varieties were cultivated in mixtures. However, the study did reveal various interesting trends that are warranting of further investigation. The most interesting effect from a nutritional and functional point of view is the relationship between ARP, rheological properties, protein content and gluten content. These connections permit the potential towards the improvement of ancient varieties.


2005 ◽  
Vol 56 (7) ◽  
pp. 691 ◽  
Author(s):  
B. J. Stodart ◽  
M. Mackay ◽  
H. Raman

A set of 44 bread wheat landraces was used to determine the efficacy of 16 amplifed fragment length polymorphism (AFLP) primers and 63 wheat simple sequence repeat (SSR) markers in identifying polymorphisms between accessions. The SSR markers detected approximately 10 alleles per locus with a mean gene diversity (Hz) of 0.63, whereas AFLP primers identified approximately 147 fragments per primer with a mean gene diversity of 0.25. A set of 54 SSR markers and 11 AFLP primers was identified as highly polymorphic (polymorphic information content (PIC) ≥ 0.5 and 0.3 for SSR and AFLP, respectively), and suitable for molecular characterisation of germplasm. Principle coordinate analysis suggested that the AFLP and SSR loci could be used to discriminate among accessions collected from North Africa and southern Europe from those collected from the Middle East. Both marker types indicate that accessions from North Africa and southern Europe, the Middle East, and southern and eastern Asia are genetically diverse. The results indicate the usefulness of the molecular markers to assess genetic diversity present within germplasm collections.


Author(s):  
Ahmed Medhat Mohamed Al-Naggar ◽  
Mohamed Abd El-Maboud Abd El-Shafi ◽  
Mohamed Helmy El-Shal ◽  
Ali Hassan Anany

To increase the genetic progress in wheat (Triticum aestivum L.) yield, breeders search for germplasm of high genetic diversity, one of them is the landraces. The present study aimed at evaluating genetic diversity of 20 Egyptian wheat landraces and two cultivars using microsatellite markers (SSRs). Ten SSR markers amplified a total of 27 alleles in the set of 22 wheat accessions, of which 23 alleles (85.2%) were polymorphic. The majority of the markers showed high polymorphism information content (PIC) values (0.67-0.94), indicating the diverse nature of the wheat accessions and/or highly informative SSR markers used in this study. The genotyping data of the SSR markers were used to assess genetic variation in the wheat accessions by dendrogram. The highest genetic distance was found between G21 (Sakha 64; an Egyptian cultivar) and the landrace accession No. 9120 (G11). These two genotypes could be used as parents in a hybridization program followed by selection in the segregating generations, to identify some transgressive segregates of higher grain yield than both parents. The clustering assigned the wheat genotypes into four groups based on SSR markers. The results showed that the studied SSR markers, provided sufficient polymorphism and reproducible fingerprinting profiles for evaluating genetic diversity of wheat landraces. The analyzed wheat landraces showed a good level of genetic diversity at the molecular level. Molecular variation evaluated in this study of wheat landraces can be useful in traditional and molecular breeding programs.


Sign in / Sign up

Export Citation Format

Share Document