Thermal Storage in a Heat Pump Heated Living Room Floor for Urban District Power Balancing - Effects on Thermal Comfort, Energy Loss and Costs for Residents

2021 ◽  
Vol 13 (2) ◽  
pp. 983
Author(s):  
Mustapha Mukhtar ◽  
Bismark Ameyaw ◽  
Nasser Yimen ◽  
Quixin Zhang ◽  
Olusola Bamisile ◽  
...  

The world has not been able to achieve minimum greenhouse gas emissions in buildings’ energy consumptions because the energy and emissions optimization techniques have not been fully utilized. Thermal comfort is one of the most important issues for both residential and commercial buildings. Out of the 40% of global energy consumed by buildings, a large fraction is used to maintain their thermal comfort. In this study, a comprehensive review of the recent advancements in building energy conservation and efficiency application is presented based on existing high-quality research papers. Additionally, the retrofit of the heating/cooling and hot water system for an entire community in Cyprus is presented. This study aims to analyze the technical and environmental benefits of replacing existing electric heaters for hot water with heat pump water heating systems and the use of heat pump air conditioners for thermal comfort in place of the existing ordinary air conditioners for space heating and cooling. One administrative building, 86 apartments (including residential and commercial) buildings, and a restaurant building is retrofitted, and the feasibility of the project is determined based on three economic indicators, namely; simple payback period (SPP), internal rate of return (IRR), and net present value (NPV). The electrical energy required by the hot water systems and the heating/cooling system is reduced by 263,564 kWh/yr and 144,825 kWh/yr, respectively. Additionally, the retrofit project will reduce Cyprus’ CO2 emission by 121,592.8 kg yearly. The SPP, IRR, and NPV for the project show that the retrofit is economically feasible.


2016 ◽  
Author(s):  
Gabriel Agila ◽  
Guillermo Soriano

This research develops a detailed model for a Water to Water Heat Pump Water Heater (HPWH), operating for heating and cooling simultaneously, using two water storage tanks as thermal deposits. The primary function of the system is to produce useful heat for domestic hot water services according to the thermal requirements for an average household (two adults and one child) in the city of Quito, Ecuador. The purpose of the project is to analyze the technical and economic feasibility of implementing thermal storage and heat pump technology to provide efficient thermal services and reduce energy consumption; as well as environmental impacts associated with conventional systems for residential water heating. An energy simulation using TRNSYS 17 is carried to evaluate model operation for one year. The purpose of the simulation is to assess and quantifies the performance, energy consumption and potential savings of integrating heat pump systems with thermal energy storage technology, as well as determines the main parameter affecting the efficiency of the system. Finally, a comparative analysis based on annual energy consumption for different ways to produce hot water is conducted. Five alternatives were examined: (1) electric storage water heater; (2) gas fired water heater; (3) solar water heater; (4) air source heat pump water heater; and (5) a heat pump water heater integrated with thermal storage.


2017 ◽  
Vol 115 ◽  
pp. 393-405 ◽  
Author(s):  
Fang Liu ◽  
Weiquan Zhu ◽  
Yang Cai ◽  
Eckhard A. Groll ◽  
Jianxing Ren ◽  
...  

2010 ◽  
Vol 30 (8-9) ◽  
pp. 1073-1077 ◽  
Author(s):  
N. Pardo ◽  
Á. Montero ◽  
J. Martos ◽  
J.F. Urchueguía

2020 ◽  
Vol 5 ◽  
pp. 11
Author(s):  
Sabrin Korichi ◽  
Bachir Bouchekima ◽  
Nabiha Naili ◽  
Messaouda Azzouzi

Motivated by the rapid spread of the novel pandemic disease (COVID-19) that swept the most countries in the world, a new radiation heating system consists of wall radiator panel system connected to a reversible geothermal heat pump (GHP) coupled with horizontal ground heat exchanger (HGHX) was proposed as fast and permanent solution to the risks of the dispersion of airborne infectious diseases in air-conditioned enclosed spaces. An experimental system was installed and tested in the laboratory of thermal process of Research and Technology Center of Energy (CRTEn), Tunisia, in order to achieve the two main goals of this work: developing a new radiation heating system with quick and inexpensive implementation while ensuring high efficiency and environment-friendly performance for the entire system. The results obtained show that it is feasible to use the novel RPHs as heat rejecter of the horizontal ground source heat pump system (HGSHPs) for heating buildings with limited surface land areas epically those located in the Mediterranean regions such as Tunisia, the average performance coefficients of the geothermal heat pump COPhp and the overall system COPsys are found to be 6.3 and 3, respectively. The thermal comfort analysis indicates that there is only a small vertical temperature fluctuation in the test room that would not produce any negative effect on thermal comfort.


Author(s):  
Christoph Trinkl ◽  
Wilfried Zo¨rner ◽  
Vic Hanby

Both solar and heat pump heating systems are innovative technologies for sustaining ecological heat generation. They are gaining more and more importance due to the accelerating pace of climate change and the rising cost of limited fossil resources. Against this background, a heating system combining solar thermal collectors, heat pump, stratified thermal storage and water/ice latent heat storage has been investigated. The major advantages of the proposed solar/heat pump heating system are considered to be its flexible application (suitable for new and existing buildings because of acceptable space demand) as well as the improvement of solar fraction (extended solar collector utilisation time, enhanced collector efficiency), i.e. the reduction of electric energy demand for the heat pump. In order to investigate and optimise the heating system, a dynamic system simulation model was developed. On this basis, a fundamental control strategy was derived for the overall coordination of the heating system with particular regard to the performance of the two storage tanks. In a simulation study, a fundamental investigation of the heating system configuration was carried out and optimisation derived for the system control as well as the selection of components and their dimensioning. The influence of different parameters on the system performance was identified, where the collector area and the latent heat storage volume were found to be the predominant parameters for system dimensioning. For a modern one-family house, a solar collector area of 30m2 and a latent heat store volume of 12.5m3 are proposed. In this configuration, the heating system reaches a seasonal performance factor of 4.6, meaning that 78% of the building’s and users’ heat demand are delivered by solar energy. The results show that the solar/heat pump heating system can give an acceptable performance using up-to-date components in a state-of-the-art building.


Sign in / Sign up

Export Citation Format

Share Document