scholarly journals Towards a Data Science Framework Integrating Process and Data Mining for Organizational Improvement

Author(s):  
Andrea Delgado ◽  
Adriana Marotta ◽  
Laura González ◽  
Libertad Tansini ◽  
Daniel Calegari
2019 ◽  
Vol 5 (30) ◽  
pp. 960-968
Author(s):  
Güner Gözde KILIÇ
Keyword(s):  

Author(s):  
M. A. Burhanuddin ◽  
Ronizam Ismail ◽  
Nurul Izzaimah ◽  
Ali Abdul-Jabbar Mohammed ◽  
Norzaimah Zainol

Recently, the mobile service providers have been growing rapidly in Malaysia. In this paper, we propose analytical method to find best telecommunication provider by visualizing their performance among telecommunication service providers in Malaysia, i.e. TM Berhad, Celcom, Maxis, U-Mobile, etc. This paperuses data mining technique to evaluate the performanceof telecommunication service providers using their customers feedback from Twitter Inc. It demonstrates on how the system could process and then interpret the big data into a simple graph or visualization format. In addition, build a computerized tool and recommend data analytic model based on the collected result. From prepping the data for pre-processing until conducting analysis, this project is focusing on the process of data science itself where Cross Industry Standard Process for Data Mining (CRISP-DM) methodology will be used as a reference. The analysis was developed by using R language and R Studio packages. From the result, it shows that Telco 4 is the best as it received highest positive scores from the tweet data. In contrast, Telco 3 should improve their performance as having less positive feedback from their customers via tweet data. This project bring insights of how the telecommunication industries can analyze tweet data from their customers. Malaysia telecommunication industry will get the benefit by improving their customer satisfaction and business growth. Besides, it will give the awareness to the telecommunication user of updated review from other users.


Author(s):  
Gurdeep S Hura

This chapter presents this new emerging technology of social media and networking with a detailed discussion on: basic definitions and applications, how this technology evolved in the last few years, the need for dynamicity under data mining environment. It also provides a comprehensive design and analysis of popular social networking media and sites available for the users. A brief discussion on the data mining methodologies for implementing the variety of new applications dealing with huge/big data in data science is presented. Further, an attempt is being made in this chapter to present a new emerging perspective of data mining methodologies with its dynamicity for social networking media and sites as a new trend and needed framework for dealing with huge amount of data for its collection, analysis and interpretation for a number of real world applications. A discussion will also be provided for the current and future status of data mining of social media and networking applications.


Author(s):  
Sabitha Rajagopal

Data Science employs techniques and theories to create data products. Data product is merely a data application that acquires its value from the data itself, and creates more data as a result; it's not just an application with data. Data science involves the methodical study of digital data employing techniques of observation, development, analysis, testing and validation. It tackles the real time challenges by adopting a holistic approach. It ‘creates' knowledge about large and dynamic bases, ‘develops' methods to manage data and ‘optimizes' processes to improve its performance. The goal includes vital investigation and innovation in conjunction with functional exploration intended to notify decision-making for individuals, businesses, and governments. This paper discusses the emergence of Data Science and its subsequent developments in the fields of Data Mining and Data Warehousing. The research focuses on need, challenges, impact, ethics and progress of Data Science. Finally the insights of the subsequent phases in research and development of Data Science is provided.


2019 ◽  
Vol 8 (10) ◽  
pp. 1709 ◽  
Author(s):  
Tsung-Lun Tsai ◽  
Min-Hsin Huang ◽  
Chia-Yen Lee ◽  
Wu-Wei Lai

Besides the traditional indices such as biochemistry, arterial blood gas, rapid shallow breathing index (RSBI), acute physiology and chronic health evaluation (APACHE) II score, this study suggests a data science framework for extubation prediction in the surgical intensive care unit (SICU) and investigates the value of the information our prediction model provides. A data science framework including variable selection (e.g., multivariate adaptive regression splines, stepwise logistic regression and random forest), prediction models (e.g., support vector machine, boosting logistic regression and backpropagation neural network (BPN)) and decision analysis (e.g., Bayesian method) is proposed to identify the important variables and support the extubation decision. An empirical study of a leading hospital in Taiwan in 2015–2016 is conducted to validate the proposed framework. The results show that APACHE II and white blood cells (WBC) are the two most critical variables, and then the priority sequence is eye opening, heart rate, glucose, sodium and hematocrit. BPN with selected variables shows better prediction performance (sensitivity: 0.830; specificity: 0.890; accuracy 0.860) than that with APACHE II or RSBI. The value of information is further investigated and shows that the expected value of experimentation (EVE), 0.652 days (patient staying in the ICU), is saved when comparing with current clinical experience. Furthermore, the maximal value of information occurs in a failure rate around 7.1% and it reveals the “best applicable condition” of the proposed prediction model. The results validate the decision quality and useful information provided by our predicted model.


Author(s):  
Fernando Martinez-Plumed ◽  
Lidia Contreras-Ochando ◽  
Cesar Ferri ◽  
Jose Hernandez Orallo ◽  
Meelis Kull ◽  
...  
Keyword(s):  

2021 ◽  
Vol 85 ◽  
pp. 101539
Author(s):  
Alessia Calafiore ◽  
Gregory Palmer ◽  
Sam Comber ◽  
Daniel Arribas-Bel ◽  
Alex Singleton

2016 ◽  
Vol 21 (3) ◽  
pp. 525-547 ◽  
Author(s):  
Scott Tonidandel ◽  
Eden B. King ◽  
Jose M. Cortina

Advances in data science, such as data mining, data visualization, and machine learning, are extremely well-suited to address numerous questions in the organizational sciences given the explosion of available data. Despite these opportunities, few scholars in our field have discussed the specific ways in which the lens of our science should be brought to bear on the topic of big data and big data's reciprocal impact on our science. The purpose of this paper is to provide an overview of the big data phenomenon and its potential for impacting organizational science in both positive and negative ways. We identifying the biggest opportunities afforded by big data along with the biggest obstacles, and we discuss specifically how we think our methods will be most impacted by the data analytics movement. We also provide a list of resources to help interested readers incorporate big data methods into their existing research. Our hope is that we stimulate interest in big data, motivate future research using big data sources, and encourage the application of associated data science techniques more broadly in the organizational sciences.


Sign in / Sign up

Export Citation Format

Share Document