scholarly journals Low-temperature thermochronological constraints on the Аlpine evolution of the central parts of Sredna Gora Zone, Bulgaria

2021 ◽  
Vol 82 (3) ◽  
pp. 81-83
Author(s):  
Eleonora Balkanska ◽  
Stoyan Georgiev ◽  
Alexandre Kounov ◽  
Milorad Antić ◽  
Takahiro Tagami ◽  
...  

We present the first apatite and zircon fission-track results coupled with new muscovite and biotite 40Ar/39Ar analysis on samples from the pre-Mesozoic granitic basement and the Upper Cretaceous to Danian volcano-sedimentary cover, which allowed us to reveal the Alpine thermal and tectonic evolution of the central parts of Sredna Gora Zone. Our new results disclosed the existence of several heating and cooling episodes related to distinct tectonic and magmatic events in the studied area.

2020 ◽  
Author(s):  
P.J. Umhoefer ◽  
et al.

Consists of geochronology and thermochronology data, and methods related to those data. Geochronology data are from <sup>40</sup>Ar/<sup>39</sup>Ar dating of volcanic rocks and U-Pb analysis of detrital zircons, while thermochronology data are from apatite and zircon fission-track and apatite helium cooling ages.


2014 ◽  
Vol 65 (4) ◽  
pp. 307-326 ◽  
Author(s):  
Silvia Králiková ◽  
Rastislav Vojtko ◽  
Ubomír Sliva ◽  
Jozef Minár ◽  
Bernhard Fügenschuh ◽  
...  

Abstract The Tatra Mts area, located in the northernmost part of Central Western Carpathians on the border between Slovakia and Poland, underwent a complex Alpine tectonic evolution. This study integrates structural, sedimentary, and geomorphological data combined with fission track data from the Variscan granite rocks to discuss the Cretaceous to Quaternary tectonic and landscape evolution of the Tatra Mts. The presented data can be correlated with five principal tectonic stages (TS), including neotectonics. TS-1 (~95-80 Ma) is related to mid-Cretaceous nappe stacking when the Tatric Unit was overlain by Mesozoic sequences of the Fatric and Hronic Nappes. After nappe stacking the Tatric crystalline basement was exhumed (and cooled) in response to the Late Cretaceous/Paleogene orogenic collapse followed by orogen-parallel extension. This is supported by 70 to 60 Ma old zircon fission track ages. Extensional tectonics were replaced by transpression to transtension during the Late Paleocene to Eocene (TS-2; ~80-45 Ma). TS-3 (~45-20 Ma) is documented by thick Oligocene-lowermost Miocene sediments of the Central Carpathian Paleogene Basin which kept the underlying Tatric crystalline basement at elevated temperatures (ca. > 120 °C and < 200 °C). The TS-4 (~20-7 Ma) is linked to slow Miocene exhumation rate of the Tatric crystalline basement, as it is indicated by apatite fission track data of 9-12 Ma. The final shaping of the Tatra Mts has been linked to accelerated tectonic activity since the Pliocene (TS-5; ~7-0 Ma).


2020 ◽  
Author(s):  
Andreas Wölfler ◽  
Sebastian Reimers ◽  
Andrea Hampel ◽  
Christoph Glotzbach ◽  
István Dunkl

&lt;p&gt;The relief history of mountain belts is strongly influenced by the interplay of tectonics and surface processes, which both shape Earth&amp;#180;s landscapes. In this context, the quantification of the rates of long-term and short-term processes is key for understanding landscape evolution and requires the application of methods that integrate over different timescales. In this study, we apply low-temperature thermochronology and cosmogenic nuclides to quantify the geological and geomorphic evolution of an elevated low-relief landscape in the Eastern Alps, the so-called Nock Mountains, which are situated to the east of the Tauern Window. The low-temperature thermochronological data yield zircon fission track and zircon (U-Th)/He cooling ages of 93.4&amp;#177;12.9 and 77.8&amp;#177;7.8 Ma, respectively, which we interpret to reflect late Cretaceous cooling after Eo-Alpine metamorphism. Apatite fission track and (U-Th)/He ages are significant younger and range from 36.8 to 31.3 Ma. Time-temperature history modelling of the cooling ages suggests enhanced cooling in the Eocene followed by thermal stagnation. Thus, the rocks of the study area have been in near surface position (2-3 km) since the Late Eocene. Enhanced cooling in the Eocene is probably related to an increasing relief due to shortening, folding and thrusting in the Eastern Alps triggered by the onset of collision between the European margin and the Adriatic microplate. Under the assumption that rock exhumation occurred solely by erosion, the long-term average erosion rate derived from the thermochronological data is ~50-90 mm/kyr. Catchment-wide erosion rates derived from cosmogenic &lt;sup&gt;10&lt;/sup&gt;Be in river sediments&amp;#160; range from 83&amp;#177;7 to 205&amp;#177;18 mm/kyr and hence are lower than in other parts of the Alps. As the &lt;sup&gt;10&lt;/sup&gt;Be-derived erosion rates and the long-term rates derived from thermochronology agree despite the different timescales over which the two methods integrate, our new data suggest that erosion rates did not change significantly over the last ~40 Ma. This is remarkable because within this time span numerous tectonic processes and glacial-interglacial cycles affected the study area. To investigate the deglaciation history after the Last Glacial Maximum in the Nock Mountains, we sampled glacially polished quartz veins for &lt;sup&gt;10&lt;/sup&gt;Be exposure dating. The first four exposure ages obtained so far cluster between 14.5&amp;#177;1.4 and 16.8&amp;#177;1.6 ka. We interpret these ages as the record the retreat of the ice cover in the study area shortly after the Oldest Dryas stadial.&lt;/p&gt;


2020 ◽  
Author(s):  
P.J. Umhoefer ◽  
et al.

Consists of geochronology and thermochronology data, and methods related to those data. Geochronology data are from <sup>40</sup>Ar/<sup>39</sup>Ar dating of volcanic rocks and U-Pb analysis of detrital zircons, while thermochronology data are from apatite and zircon fission-track and apatite helium cooling ages.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 604
Author(s):  
Evgeny V. Vetrov ◽  
Johan De Grave ◽  
Natalia I. Vetrova ◽  
Fedor I. Zhimulev ◽  
Simon Nachtergaele ◽  
...  

The West Siberian Basin (WSB) is one of the largest intracratonic Meso-Cenozoic basins in the world. Its evolution has been studied over the recent decades; however, some fundamental questions regarding the tectonic evolution of the WSB remain unresolved or unconfirmed by analytical data. A complete understanding of the evolution of the WSB during the Mesozoic and Cenozoic eras requires insights into the cooling history of the basement rocks as determined by low-temperature thermochronometry. We presented an apatite fission track (AFT) thermochronology study on the exposed parts of the WSB basement in order to distinguish tectonic activation episodes in an absolute timeframe. AFT dating of thirteen basement samples mainly yielded Cretaceous cooling ages and mean track lengths varied between 12.8 and 14.5 μm. Thermal history modeling based on the AFT data demonstrates several Mesozoic and Cenozoic intracontinental tectonic reactivation episodes affected the WSB basement. We interpreted the episodes of tectonic activity accompanied by the WSB basement exhumation as a far-field effect from tectonic processes acting on the southern and eastern boundaries of Eurasia during the Mesozoic–Cenozoic eras.


Sign in / Sign up

Export Citation Format

Share Document