scholarly journals Transfusion Immunology

Author(s):  
Fahri Yüce Ayhan ◽  
Hasan Ağın

Transfusion as a transplantation of blood cells is a complex process with many immunological consequences which are variably related to the features of donors, recipients and blood components. In all allogeneic blood transfusions immune responses are stimulated by effecting innate and adaptive immunities. Red blood cell antigens, platelet antigens, neutrophil antigens and major histocompatibility complex antigens have important roles in blood transfusion. The interactions of the stimulated antibodies with these antigens have significant consequences that result in various clinical manifestations, some of them may be life-threating. More improved understanding of the immunological processes associated with transfusion will make obtaining more effective results possible in the management of the adverse effects of transfusion as for safety of the patient and transfusion applications.

1991 ◽  
Vol 80 (1) ◽  
pp. 9-15 ◽  
Author(s):  
D. J. Propper ◽  
M. C. Jones ◽  
K. N. Stewart ◽  
G. R. D. Catto ◽  
D. A. Power

1. Blood transfusions improve renal allograft survival rates, but may induce antibodies which are directed to class I major histocompatibility complex antigens and mediate hyperacute transplant rejection. A model to study the development of such antibodies was developed in inbred strains of rats. 2. The influence of transplantation antigens shared between an initial course of blood transfusions, given with cyclosporin A, and a subsequent antigenic challenge (blood transfusion), given without cyclosporin A, on alloantibody responses to class I major histocompatibility complex antigens was then investigated. 3. Cyclosporin A administration prevented the development of alloantibodies to class I major histocompatibility complex antigens during the initial transfusion period. 4. After the challenge transfusions, alloantibody responses to class 1 major histocompatibility complex antigens were suppressed when class I major histocompatibility complex or minor histocompatibility antigens were shared between the initial and final transfusions. 5. This suppression only extended to third party class I antigens when minor histocompatibility complex antigens were shared between the initial and final transfusions. Sharing of class I or class II antigens had no effect on alloantibody responses to third party class I antigens co-expressed on the same cell. 6. These studies suggest that cyclosporin A given with blood transfusions may prevent clinical sensitization while permitting the development of suppressor activity, mediated by shared minor histocompatibility complex determinants, to a broad range of potential donor antigens.


2020 ◽  
Vol 99 (10) ◽  
pp. 4804-4808
Author(s):  
N.G. Wilkinson ◽  
R.T. Kopulos ◽  
L.M. Yates ◽  
W.E. Briles ◽  
R.L. Taylor

2016 ◽  
Vol 90 (19) ◽  
pp. 8605-8620 ◽  
Author(s):  
Marijana Rucevic ◽  
Georgio Kourjian ◽  
Julie Boucau ◽  
Renata Blatnik ◽  
Wilfredo Garcia Bertran ◽  
...  

ABSTRACTDespite the critical role of epitope presentation for immune recognition, we still lack a comprehensive definition of HIV peptides presented by HIV-infected cells. Here we identified 107 major histocompatibility complex (MHC)-bound HIV peptides directly from the surface of live HIV-transfected 293T cells, HIV-infected B cells, and primary CD4 T cells expressing a variety of HLAs. The majority of peptides were 8 to 12 amino acids (aa) long and mostly derived from Gag and Pol. The analysis of the total MHC-peptidome and of HLA-A02-bound peptides identified new noncanonical HIV peptides of up to 16 aa that could not be predicted by HLA anchor scanning and revealed an heterogeneous surface peptidome. Nested sets of surface HIV peptides included optimal and extended HIV epitopes and peptides partly overlapping or distinct from known epitopes, revealing new immune responses in HIV-infected persons. Surprisingly, in all three cell types, a majority of Gag peptides derived from p15 rather than from the most immunogenic p24. The cytosolic degradation of peptide precursors in corresponding cells confirmed the generation of identified surface-nested peptides. Cytosolic degradation revealed peptides commonly produced in all cell types and displayed by various HLAs, peptides commonly produced in all cell types and selectively displayed by specific HLAs, and peptides produced in only one cell type. Importantly, we identified areas of proteins leading to common presentations of noncanonical peptides by several cell types with distinct HLAs. These peptides may benefit the design of immunogens, focusing T cell responses on relevant markers of HIV infection in the context of HLA diversity.IMPORTANCEThe recognition of HIV-infected cells by immune T cells relies on the presentation of HIV-derived peptides by diverse HLA molecules at the surface of cells. The landscape of HIV peptides displayed by HIV-infected cells is not well defined. Considering the diversity of HLA molecules in the human population, it is critical for vaccine design to identify HIV peptides that may be displayed despite the HLA diversity. We identified 107 HIV peptides directly from the surface of three cell types infected with HIV. They corresponded to nested sets of HIV peptides of canonical and novel noncanonical lengths not predictable by the presence of HLA anchors. Importantly, we identified areas of HIV proteins leading to presentation of noncanonical peptides by several cell types with distinct HLAs. Including such peptides in vaccine immunogen may help to focus immune responses on common markers of HIV infection in the context of HLA diversity.


2002 ◽  
Vol 76 (12) ◽  
pp. 6093-6103 ◽  
Author(s):  
Eishiro Mizukoshi ◽  
Michelina Nascimbeni ◽  
Joshua B. Blaustein ◽  
Kathleen Mihalik ◽  
Charles M. Rice ◽  
...  

ABSTRACT The chimpanzee is a critical animal model for studying cellular immune responses to infectious pathogens such as hepatitis B and C viruses, human immunodeficiency virus, and malaria. Several candidate vaccines and immunotherapies for these infections aim at the induction or enhancement of cellular immune responses against viral epitopes presented by common human major histocompatibility complex (MHC) alleles. To identify and characterize chimpanzee MHC class I molecules that are functionally related to human alleles, we sequenced 18 different Pan troglodytes (Patr) alleles of 14 chimpanzees, 2 of them previously unknown and 3 with only partially reported sequences. Comparative analysis of Patr binding pockets and binding assays with biotinylated peptides demonstrated a molecular homology between the binding grooves of individual Patr alleles and the common human alleles HLA-A1, -A2, -A3, and -B7. Using cytotoxic T cells isolated from the blood of hepatitis C virus (HCV)-infected chimpanzees, we then mapped the Patr restriction of these HCV peptides and demonstrated functional homology between the Patr-HLA orthologues in cytotoxicity and gamma interferon (IFN-γ) release assays. Based on these results, 21 HCV epitopes were selected to characterize the chimpanzees' cellular immune response to HCV. In each case, IFN-γ-producing T cells were detectable in the blood after but not prior to HCV infection and were specifically targeted against those HCV peptides predicted by Patr-HLA homology. This study demonstrates a close functional homology between individual Patr and HLA alleles and shows that HCV infection generates HCV peptides that are recognized by both chimpanzees and humans with Patr and HLA orthologues. These results are relevant for the design and evaluation of vaccines in chimpanzees that can now be selected according to the most frequent human MHC haplotypes.


2017 ◽  
Vol 92 (1) ◽  
Author(s):  
Francis Mwimanzi ◽  
Mako Toyoda ◽  
Macdonald Mahiti ◽  
Jaclyn K. Mann ◽  
Jeffrey N. Martin ◽  
...  

ABSTRACTPatient-derived HIV-1 subtype B Nef clones downregulate HLA-A more efficiently than HLA-B. However, it remains unknown whether this property is common to Nef proteins across primate lentiviruses and how antiviral immune responses may be affected. We examined 263 Nef clones from diverse primate lentiviruses including different pandemic HIV-1 group M subtypes for their ability to downregulate major histocompatibility complex class A (MHC-A) and MHC-B from the cell surface. Though lentiviral Nef proteins differed markedly in their absolute MHC-A and MHC-B downregulation abilities, all lentiviral Nef lineages downregulated MHC-A, on average, 11 to 32% more efficiently than MHC-B. Nef genotype/phenotype analyses in a cohort of HIV-1 subtype C-infected patients (n= 168), together with site-directed mutagenesis, revealed Nef position 9 as a subtype-specific determinant of differential HLA-A versus HLA-B downregulation activity. Nef clones harboring nonconsensus variants at codon 9 downregulated HLA-B (though not HLA-A) significantly better than those harboring the consensus sequence at this site, resulting in reduced recognition of infected target cells by HIV-1-specific CD8+effector cellsin vitro. Among persons expressing protective HLA class I alleles, carriage of Nef codon 9 variants was also associated with reducedex vivoHIV-specific T cell responses. Our results demonstrate that Nef's inferior ability to downregulate MHC-B compared to that of MHC-A is conserved across primate lentiviruses and suggest that this property influences antiviral cellular immune responses.IMPORTANCEPrimate lentiviruses encode the Nef protein that plays an essential role in establishing persistent infection in their respective host species. Nef interacts with the cytoplasmic region of MHC-A and MHC-B molecules and downregulates them from the infected cell surface to escape recognition by host cellular immunity. Using a panel of Nef alleles isolated from diverse primate lentiviruses including pandemic HIV-1 group M subtypes, we demonstrate that Nef proteins across all lentiviral lineages downregulate MHC-A approximately 20% more effectively than MHC-B. We further identify a naturally polymorphic site at Nef position 9 that contributes to the MHC-B downregulation function in HIV-1 subtype C and show that carriage of Nef variants with enhanced MHC-B downregulation ability is associated with reduced breadth and magnitude of MHC-B-restricted cellular immune responses in HIV-infected individuals. Our study underscores an evolutionarily conserved interaction between lentiviruses and primate immune systems that may contribute to pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document