scholarly journals ASSESSMENT OF THE INDOOR AIR PURIFICATION BY PHOTOCATALYTIC PAINTS

2020 ◽  
Vol 50 (2) ◽  
pp. 71-76
Author(s):  
Federico Salvadores ◽  
Orlando Mario Alfano ◽  
María de los Milagros Ballari

Photocatalytic building materials containing TiO2 were extensively studied for outdoor applications using solar radiation. Nowadays, the market offers a wide variety of these materials with self-cleaning and air purification functionalities. However, heterogeneous photocatalysis applied in indoor construction materials was less developed. The objective of this work is to investigate the photocatalytic performance of carbon doped TiO2 in replacement of the normal pigments in indoor wall paint formulations. To achieve this goal, the photocatalytic oxidation of acetaldehyde in gas phase was carried out. The air decontamination process was conducted using regular indoor light in a bench scale chamber photoreactor simulating a room. The main environmental conditions that affect the photocatalytic process were varied: air flow rate, irradiance, relative humidity and acetaldehyde concentration. The results were analyzed through the response surface methodology and revealed the air purifying power of photocatalytic paints under indoor conditions.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Yuanwei Lu ◽  
Dinghui Wang ◽  
Yuting Wu ◽  
Chongfang Ma ◽  
Xingjuan Zhang ◽  
...  

Photocatalysis is an effective method of air purification at the condition of a higher pollutant concentration. However, its wide application in indoor air cleaning is limited due to the low level of indoor air contaminants. Immobilizing the nanosized TiO2particles on the surface of activated carbon filter (TiO2/AC film) could increase the photocatalytic reaction rate as a local high pollutant concentration can be formed on the surface of TiO2by the adsorption of AC. However, the pollutant removal still decreased quickly with the increase in flow velocity, which results in a decrease in air treatment capacity. In order to improve the air treatment capacity by the photocatalytic oxidation (PCO) method, this paper used formaldehyde (HCHO) as a contaminant to study the effect of combination of PCO with nonthermal plasma technology (NTP) on the removal of HCHO. The experimental results show that HCHO removal is more effective with line-to-plate electrode discharge reactor; the HCHO removal and the reaction rate can be enhanced and the amount of air that needs to be cleaned can be improved. Meanwhile, the results show that there is the synergistic effect on the indoor air purification by the combination of PCO with NTP.


Author(s):  
Rafael Piñeiro ◽  
Eva Jimenez-Relinque ◽  
Roman Nevshupa ◽  
Marta Castellote

Primary and secondary emissions of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) from a waterproof coal tar membrane and their effect on the indoor air quality were investigated through a case study in a residential building situated in Madrid, Spain. The air contaminants were analyzed in situ using photoionization method and several samples of contaminants were taken using three sorbents: activated carbon, XAD2 and Tenax GR. It was found that various VOCs such as toluene, p- and m-Xylene, PAHs such as naphthalene, methyl-naphthalenes, acenaphthene, acenaphthylene, phenanthrene and fluorine, volatile organic halogens including chloroform and trichlorofluoromethane, and alkylbenzene (1,2,4-trimethylbenzene) were found at concentrations, which exceeded the limits established by international and national agencies (WHO, EPA, OSHA). Some of the above organic compounds were found also in the samples of construction and building materials, which were obtained at different heights and places. The analysis of possible sources of the contaminants pointed at the original coal-tar membrane, which was applied on the terrace to be waterproof. During a posterior reparation the membrane was coated with a new one that hindered dissipation of emitted contaminants. The contaminants leached out and were absorbed by construction materials down in the dwelling. These materials then acted as secondary emission sources. To remediate the emission problem as the contaminated materials were removed and then a ventilation system was installed to force the gasses being emitted from the rest of contaminated slab outside. Follow-up has validated the success of the remediation procedure.


2019 ◽  
Vol 10 (1) ◽  
pp. 9-14
Author(s):  
Marie Sokolová ◽  
Pavla Ryparová

All building materials can be affected by microbiological agents during their lifecycle. The presence of microorganisms changes the appearance of the surface, degrading it, and they can even cause health problems to the residents. The biological susceptibility is dependent on the content of nutrient based on organic compounds. Thus one of the most susceptible of those materials are earthen construction materials. The degree of fungal growth is influenced by the chemical composition and plant fibres additives as well as the external conditions such as temperature and relative humidity. The earth plastering mortar has started to gain more attention recently as it is considered to have a low environmental impact and to increase the indoor air quality. Mechanical and physical characteristics of earth materials were studied by a number of authors but the knowledge about the biological resistance of the material is scarce. This study intends to look into the issue of the biological colonisation of earth plasters depending on the relative humidity. The samples, made of four types of earth plasters with different plant fibres, were placed to an environment of the relative humidity ranging from 33% to 100%. During a period of 4 weeks the extent of fungal growth was observed.


2011 ◽  
Vol 255-260 ◽  
pp. 2836-2840
Author(s):  
Qing Liang Yu ◽  
M.M. Ballari ◽  
H.J.H. Brouwers

In the present article, kinetics of the photocatalytic oxidation (PCO) of nitric oxide (NO, as a typical air pollutant) is addressed. An extended Langmuir-Hinshelwood reaction rate model is proposed to describe the PCO of NO under indoor air conditions. The derived model incorporates the influence of the indoor air conditions in the process of the PCO. The good agreement between the predictions from the model and experimental results indicates the validity of the proposed model.


2012 ◽  
Vol 128 ◽  
pp. 159-170 ◽  
Author(s):  
Hugo Destaillats ◽  
Mohamad Sleiman ◽  
Douglas P. Sullivan ◽  
Catherine Jacquiod ◽  
Jean Sablayrolles ◽  
...  

2017 ◽  
Vol 27 (10) ◽  
pp. 1322-1340
Author(s):  
Érica Coelho Pagel ◽  
Neyval Costa Reis ◽  
Cristina Engel de Alvarez ◽  
Jane Méri Santos ◽  
Sandra Paule Beghi ◽  
...  

Antarctic buildings are enclosed structures, which provide shelter and logistic support to researchers and personnel who remain indoors for long periods and can be affected by air pollution caused by construction materials and activities inside buildings. This study aims to investigate the indoor air quality at the Brazilian Comandante Ferraz Antarctic Station based on measurements of aldehydes, particulate matter and fungi conducted during the Antarctic summer in 2012. The sampling site was divided in conditioned (personnel living quarters) and unconditioned (service and utilities areas) compartments and outdoor sites. A field log book was used to record the activities in the station. Furniture and plywood coverings may have contributed to high average concentrations of formaldehyde. Cooking resulted in high average levels of acrolein and fine particles in most of the monitored environments. Other activities such as cleaning, use of personal and cosmetic products, waste incineration, building maintenance and movement of people and vehicles have also contributed to particles concentration increase. Dominance of the species Aspergillus versicolor and Penicillium sp. showed potential means of fungal proliferation. Considering that the functionality and operation are similar in many Antarctic buildings, some general recommendations were outlined.


Sign in / Sign up

Export Citation Format

Share Document