scholarly journals Primary and Secondary Emissions of VOCs and PAHs in Indoor Air from a Waterproof Coal-Tar Membrane: Diagnosis and Remediation

Author(s):  
Rafael Piñeiro ◽  
Eva Jimenez-Relinque ◽  
Roman Nevshupa ◽  
Marta Castellote

Primary and secondary emissions of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) from a waterproof coal tar membrane and their effect on the indoor air quality were investigated through a case study in a residential building situated in Madrid, Spain. The air contaminants were analyzed in situ using photoionization method and several samples of contaminants were taken using three sorbents: activated carbon, XAD2 and Tenax GR. It was found that various VOCs such as toluene, p- and m-Xylene, PAHs such as naphthalene, methyl-naphthalenes, acenaphthene, acenaphthylene, phenanthrene and fluorine, volatile organic halogens including chloroform and trichlorofluoromethane, and alkylbenzene (1,2,4-trimethylbenzene) were found at concentrations, which exceeded the limits established by international and national agencies (WHO, EPA, OSHA). Some of the above organic compounds were found also in the samples of construction and building materials, which were obtained at different heights and places. The analysis of possible sources of the contaminants pointed at the original coal-tar membrane, which was applied on the terrace to be waterproof. During a posterior reparation the membrane was coated with a new one that hindered dissipation of emitted contaminants. The contaminants leached out and were absorbed by construction materials down in the dwelling. These materials then acted as secondary emission sources. To remediate the emission problem as the contaminated materials were removed and then a ventilation system was installed to force the gasses being emitted from the rest of contaminated slab outside. Follow-up has validated the success of the remediation procedure.

Indoor Air ◽  
1993 ◽  
Vol 3 (1) ◽  
pp. 2-11 ◽  
Author(s):  
Ivars Neretnieks ◽  
Jan Christiansson ◽  
Leonardo Romero ◽  
Lars Dagerholt ◽  
Ji-Wei Yu

Epidemiology ◽  
2011 ◽  
Vol 22 ◽  
pp. S41
Author(s):  
Masamichi Hanazato ◽  
Emiko Todaka ◽  
Hiroko Nakaoka ◽  
Chisato Mori

2012 ◽  
Vol 209-211 ◽  
pp. 1560-1565
Author(s):  
Shu Yun Wu ◽  
Zeng Feng Yan ◽  
Jun Gang Dong ◽  
Huan Huan Liu

Volatile organic compounds (VOCs) are major constituents of the indoor air pollutants. The indoor air quality has caused wide concern for VOCs may affect human health in many ways. The VOCs in general rooms volatilize from building materials, furniture and so on. In print shops the print equipment and materials may produce a large amount of VOCs that may affect the health of the long-term print shop workers. The author has measured the VOC content and the air indexes in a seventy square-meter print shop in Xi’an with comprehensive functions, then, evaluated the pollution and proposed the preventions of the VOC content in print shops.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2289 ◽  
Author(s):  
Tereza Adamová ◽  
Jaromír Hradecký ◽  
Miloš Pánek

Volatile organic compounds (VOCs) are contained in various construction materials and interior equipment. Their higher concentrations in the indoor air are associated with negative effects on human health and are disputed in terms of health risk, since people spend a considerable part of their lifetime indoors. Therefore, the presence of VOCs in indoor air is a case of concern regarding sick building syndrome (SBS). From a historical point of view, wood and wood-based panels represent a widely used material. Nevertheless, wood appears to be nowadays a product and a material of a sustainable future. Depending on wood extractives’ composition and an abundance of diverse wood species, different profiles of volatiles are emitted. In case of wood-based panels, the impact of adhesives and additives that are essentially applied aiming to adjust the panels’ properties is even enriching this cocktail of chemicals. This paper comprises the issue of VOCs emitted from wood and wood-based panels. The most abundant VOCs were summarized. The options of VOCs for analytical determination from these matrixes are described with their benefits and limitations.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1965
Author(s):  
Alexandru Enesca ◽  
Cristina Cazan

The impact of volatile organic compounds (VOCs) on indoor air quality and, furthermore, on human health is still a subject of research investigations considering the large increase in forms of cancer and related diseases. VOCs can be 10 times higher in indoor air concentrations then that of the outdoors, as a consequence of emissions from electronics, building materials and consumer goods. Direct transformation of VOCs in mineralization products seems to be an alternative to reduce indoor air contaminants. The advantage of photocatalysis implementation in indoor air treatment is given by the absence of additional chemicals (such as H2O2) and waste. The present mini-review presents a comparative study on VOCs photocatalytic removal considering the photocatalyst composition, morphology and specific surface. The sheet-like morphology seems to provide a higher number of active sites which may contribute to oxidative reactions. The insertion of materials able to increase light absorbance or to mediate the charge carrier’s transport will have a beneficial impact on the overall photocatalytic efficiency. Additionally, surface chemistry must be considered when developing photocatalysts for certain gas pollutants in order to favor molecule absorbance in the interfacial region. An energy consumption perspective is given based on the light intensity and irradiation period.


Author(s):  
Camilla Vornanen-Winqvist ◽  
Kati Järvi ◽  
Maria A. Andersson ◽  
Kaiser Ahmed ◽  
Sander Toomla ◽  
...  

This paper describes a case study of ventilation as well as measured and perceived indoor air quality (IAQ) in a Finnish comprehensive school with a hybrid ventilation system and reported IAQ problems. An operational error was found when investigating the ventilation system that prevented air from coming into classrooms, except for short periods of high carbon dioxide (CO2) concentrations. However, results indicated that hybrid ventilation system was able to provide adequate ventilation and sufficient IAQ once properly designed and maintained. After ventilation operation was improved, occupants reported less unpleasant odors and stuffy air. The amount of total volatile organic compounds (TVOC) and some single volatile organic compounds (VOCs) decreased. Indoor mycobiota was observed in settled dust in the classrooms, from which ventilation improvement eliminated the dominant, opportunistic human pathogen species Trichoderma citrinoviride found before improvement.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 286
Author(s):  
Dorina Camelia Ilieș ◽  
Florin Marcu ◽  
Tudor Caciora ◽  
Liliana Indrie ◽  
Alexandru Ilieș ◽  
...  

Poor air quality inside museums is one of the main causes influencing the state of conservation of exhibits. Even if they are mostly placed in a controlled environment because of their construction materials, the exhibits can be very vulnerable to the influence of the internal microclimate. As a consequence, museum exhibits must be protected from potential negative effects. In order to prevent and stop the process of damage of the exhibits, monitoring the main parameters of the microclimate (especially temperature, humidity, and brightness) and keeping them in strict values is extremely important. The present study refers to the investigations and analysis of air quality inside a museum, located in a heritage building, from Romania. The paper focuses on monitoring and analysing temperature of air and walls, relative humidity (RH), CO2, brightness and particulate matters (PM), formaldehyde (HCHO), and total volatile organic compounds (TVOC). The monitoring was carried out in the Summer–Autumn 2020 Campaign, in two different exhibition areas (first floor and basement) and the main warehouse where the exhibits are kept and restored. The analyses aimed both at highlighting the hazard induced by the poor air quality inside the museum that the exhibits face. The results show that this environment is potentially harmful to both exposed items and people. Therefore, the number of days in which the ideal conditions in terms of temperature and RH are met are quite few, the concentration of suspended particles, formaldehyde, and total volatile organic compounds often exceed the limit allowed by the international standards in force. The results represent the basis for the development and implementation of strategies for long-term conservation of exhibits and to ensure a clean environment for employees, restorers, and visitors.


Sign in / Sign up

Export Citation Format

Share Document