scholarly journals Hydrogeophysical Implication of Geoelectric Sounding at Igarra Comprehensive High School, Akoko Edo Local Government, Nigeria

2021 ◽  
Vol 8 (12) ◽  
pp. 411-417
Author(s):  
Adediran Olanrewaju Adegoke ◽  
E. Rotimi Olafisoye ◽  
Oluwatoyin Ologe

Electrical resistivity method was used to carry out hydrogeophysical study in order to evaluate the groundwater potential of Igarra Comprehensive High School, Akoko Edo Local Government, Nigeria. The vertical electrical sounding technique (VES) was adopted for the resistivity method. A total of eighteen electrical soundings were conducted across the area using the Schlumberger electrode array with AB/2 varying from 1 to 65 m. After the data acquisition, interpretation was carried out qualitatively and quantitatively and the results were presented as sounding curves, tables, charts, maps and geoelectric sections. The generated geoelectric layers from the sounding curves revealed four geologic layers: the topsoil, the weathered layer, the partially weathered/fractured basement and the fresh basement with their resistivity values ranging from 129.1 to 956.4 -m, 6.8 to 1491.1 -m, 261.3 to 776.6 -m and 1515.6 to 2653.5 -m respectively. The overburden thickness in the study area varies from 5.5 to 23.5 m. The groundwater potential map enabled in the classification of the study area into: low, medium and high groundwater potential area. About 85% of the study area falls within the low groundwater potential rating while about 10% constitutes the medium groundwater potential rating and the remaining 5% constitutes high groundwater potential rating. Keywords: Groundwater, overburden, electrical resistivity, basement, geoelectric sounding.

2019 ◽  
Vol 7 (2) ◽  
pp. 61
Author(s):  
Rereloluwa Bello ◽  
Toluwaleke Ajayi

The Vertical Electrical Resistivity surveys in the Sunshine Garden Estate have contributed to a better understanding of the basement complex of Southwestern Nigeria. Nine (9) vertical electrical sounding (VES) using the Schlumberger electrode array were interpreted and the results shows three (3) subsurface geoelectric layers within the study area. These are the weathered layer, topsoil, fresh/fractured basement. Groundwater pockets such as fractured zones, valley fills/basement depressions, and weathered zones were delineated in the study area. Weathered/partially weathered layer and weathered basement/fractured basement were the two major aquifer mapped out and these aquifers are characterized by thick overburden, found within basement depressions. The groundwater potential of the study area was zoned into low, medium and high potentials. Zones where the overburden thickness (which constitutes the main aquifer unit) is greater than 13m and of low clay composition (average resistivity value between 200 - 400Ωm) are considered zones of high groundwater potential. Area where the thickness of the aquifer ranges from 11-13m with less clay composition are considered to have medium groundwater potential and the areas where the thickness of the aquifer is less than 11m are considered to have a low groundwater. The VES station underlained by high and medium groundwater potential zones are envisaged to be viable for groundwater development within the area.  


2021 ◽  
Vol 47 (2) ◽  
pp. 520-534
Author(s):  
Ayodele Kehinde Olawuyi

Hydrogeophysical study involving the use of Vertical Electrical Sounding (VES) was carried out in part of the basement complex rocks of Ilorin, central Nigeria, with the aim of determining its geoelectric parameters and groundwater potential. A total of thirty (30) VES were carried out using Schlumberger electrode configuration, with half electrode separation (AB/2) varying from 1m to 100m. Information on the subsurface lithologies, overburden thickness and aquiferous layers were obtained from the different VES locations in the study area. From the quantitative interpretations of the data collected, using the method of curve matching with the Orellana-Mooney master curves and 1-D forward modeling with WinResist 1.0 version software, three to five lithologic units were identified in the study. These include: the topsoil, sandy/lateritic clay/laterite, the weathered basement, the fractured basement and the fresh bedrock which are predominantly of the ‘KH’ curve type (30%), followed by ‘H’ type (26.7%), other type curves include ‘QH’ (16.7%), ‘HKH’, ‘HA’ and ‘A’ (6.7% each) and KQ and KQH (3.3% each). The weathered layer and the fractured basement constitute the main aquifer units. The aquifers are of generally low resistivity values (mostly below 100 Ω-m). The depths to dry bedrock at the chosen VES locations vary from 2.7 to 62.7 m with a mean value of 13.02 m in the study area. The geoelectrical interpretations of data obtained in these areas have permitted the delineation of the study area into low and moderate groundwater potential zones. This study is expected to assist in future planning for groundwater resources. Keywords: Hydrogeophysical, Basement Complex, Groundwater, Electrical Soundings, Weathered, Fractured


2017 ◽  
Vol 15 (1) ◽  
pp. 70-81
Author(s):  
V MAKINDE ◽  
A O ERUOLA ◽  
S A GANIYU ◽  
O T OLURIN ◽  
O O ADELEKE ◽  
...  

Evaluation of groundwater potential in Odeda Local Government Area, Ogun State, Southwestern Nigeria, has been carried out in this study using Vertical Electrical Sounding method. The study area is underlain by Precambrian Basement Complex rocks of Southwestern Nigeria. These rocks are inher-ently characterized by low porosity and permeability. The interpretation of thirty (30) vertical electrical sounding (VES) conducted using the Schlumberger electrode array shows four geo-electric layers in the subsurface within the study area. The overburden thickness varies from 5.9 to 39 m across the study area. This was used to prepare the groundwater potential map which assisted in the zoning of the area into low, medium and high groundwater potential zones. The study showed that about 60% of the study area falls within the low/medium rated groundwater potential zone while the remaining 40% constituted the high groundwater potential zone. Hence, the groundwater potential rating of the area is generally low.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Olayiwola G Olaseeni ◽  
Ajibola Oyebamiji ◽  
Oluwaseun Olaoye ◽  
Bosede Ojo ◽  
Ayokunle Akinlalu

This study aimed at evaluating the potential for groundwater development in the eastern part of Ado-Ekiti, Southwestern Nigeria using Vertical Electrical Sounding (VES). Data were acquired with ABEM SAS 300 and processed through partial curve matching techniques and assisted with 1-D forward modelling. Geoelectric parameters were determined from the VES interpreted result. Seven (7) different VES type curves (H, A, HA, KH, HK, QH and HKH) indicating inhomogeneity of the subsurface layer beneath the study area were observed. Weathered layer resistivity map having values ranging from 3.2 – 272 Ωm, overburden thickness of value vary between 0 and 28m and  bedrock relief values range from 360 – 480 m were delineated. It was estimated from the result that the northwestern and southeastern part which constituted about 15%of the study area possess high groundwater potential while the remaining 85% of the study area exhibit low/moderate potentials for yielding substantial water. Hence, the groundwater potential rating of the area was considered generally low.Keywords- Geoelectric, Groundwater potential, Overburden thickness, Vertical Electrical Sounding


2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Eduardo M.S. Amarante ◽  
Olivar A.L. de Lima ◽  
Susana S. Cavalcanti

ABSTRACT. To investigate the subsurface geological and hydrological conditions around the area of the Alagoinhas county cemetery – Bahia State, Brazil, 38 vertical electrical soundings using Schlumberger electrode array were performed to a maximum AB/2 spacing... RESUMO. Para investigar as condições geológicas e hidrológicas da subsuperfície na área do entorno do Cemitério Municipal de Alagoinhas, Bahia, foram realizadas 38 sondagens elétricas verticais centradas em pontos acessíveis da área. As sondagens foram...


2020 ◽  
Vol 7 ◽  
pp. 19
Author(s):  
Joseph Olakunle Coker ◽  
Akindamola Julius Agbelemoge ◽  
Stephen Oluwafemi Ariyo ◽  
Victor Makinde ◽  
Aderemi Amidu Alabi ◽  
...  

Groundwater is described as the water found beneath the surface of the earth in underground streams and aquifers and has become popular as a source of drinking potable water in Nigeria due to its quality when compared to other water sources. The Electrical resistivity method was employed in Imakun Omi Community, a coastal town in Ogun Waterside Local government area of  Ogun State with the aim of determining the groundwater potential of the area. A total of twenty (20) Vertical Electrical Soundings (VES) points were carried out in the area using the Schlumberger configuration with maximum current electrode separation (AB) of 300m using the ABEM SAS 1000 Terrameter. The results obtained were interpreted quantitatively and qualitatively using partial curve matching and computer iteration programs WINRESIST and SURFER 11 for the interpretation from which the reflection coefficient was computed. The groundwater potential of the rock units were evaluated and  40% of the stations show  high yield, 50% of the stations show medium yield and 10% of the stations was observed to have low yield. The aquifer thicknesses are very thick with values ranging from 6.9 m to 79.3 m, hence an average of 43.1mand overburden thicknesses ranging from 9.7m to 96.5 m, with an average of 53.1m


2021 ◽  
Vol 5 (1) ◽  
pp. 18
Author(s):  
Matthew Tersoo Tsepav ◽  
Aliyu Yahaya Badeggi ◽  
Obaje Nuhu George ◽  
Usman Yusuf Tanko ◽  
Ibrahim Samuel Ibbi

<p>Electrical resistivity method employing the Schlumberger array was used to occupy forty four (44) vertical electrical sounding points in Lapai town with the aim of determining the depth to aquifers, aquifer thicknesses and aquifer protective capacity. The G41 Geotron resistivity meter was used in obtaining the apparent resistivity data which was processed using Interpex 1XD resistivity interpretation software. The results revealed four lithologic sections which include top lateritic soil, sandy clay, fractured basement and fresh basement. Both confined and unconfined aquifers were identified within the area, with four classes of aquifer proactive capacities as high, moderate, weak and poor. While the aquifer at VES 20 was highly protected, twenty other aquifers were moderately protected, eight others had weak protection and fifteen aquifers were poorly protected. The aquifers were generally of good thicknesses and at varying reasonable depths, making them good reservoirs of water in appreciable quantity. The average aquifer thickness was estimated to be 48.36m while the average depth to aquifers was estimated to be 56.68m.</p>


Author(s):  
Dian Darisma ◽  
Ferdy Fernanda ◽  
Muhammad Syukri

Lam Apeng is a village with a majority of people living as farmers, which causes the need of water for agriculture is increasing. The water demand in this area continues to increase as the population increases, for various purposes. The objective of this study is to determine the distribution of the groundwater layer using the electrical resistivity method and to determine groundwater potential using hydraulic parameters. This research is conducted using 2 measurement line with a length of each line is 112 meters and distances of each electrode is 2 meters. The data invert using Res2Dinv software to obtain 2D subsurface lithology subsurface. At line 1, the aquifer (sand) layer is located in the second layer with a rock resistivity value of 12 Ωm - 18.6 Ωm at a depth of 8 m - 18 m. At line 2, the aquifer (sand) layer is also located in the second layer with a resistivity value of 4.6 Ωm - 18 Ωm at a depth of 5 m – 12 m. Based on the interpretation of the two measurement lines, it can be concluded that the type of aquifer in the research site is a semi unconfined aquifer. In this study, hydraulic parameters (hydraulic conductivity, longitudinal conductance, transverse resistance, and transmissivity) was calculated based on the resistivity value and the thickness of the aquifer layer. The average resistivity of the aquifer layer used is 15.3 Ωm and 11.3 Ωm, respectively for line 1 and line 2, indicating that the aquifer was moderately corrosive. Longitudinal conductance values are 0.65 Ω-1 and 0.62 Ω-1 which indicated moderate protective capacity. The transmissivity values are 6.78 m2/dayand 4.77 m2/day, which indicates that the designation in this area is low and the groundwater potential is local or only for personal consumption.


Sign in / Sign up

Export Citation Format

Share Document