Viscoelastic Behavior of Styrene-Butadiene-Styrene Block Copolymers in Temperature Range of Glass-Rubber Transition of Styrene Block

1996 ◽  
Vol 69 (1) ◽  
pp. 73-80 ◽  
Author(s):  
N. Nakajima

Abstract Dynamic mechanical measurements were performed with styrene-butadiene-styrene (SBS) block copolymers, Kraton D-1101 and D-l 102. Isochronal data were obtained from −130 to 85°C in the tensile mode at 1 Hz and from 60 to 160°C in the shear mode at 1 rad/s. The isothermal measurements were also performed at 60, 90, 120, 140, and 160°C in the frequency range of 0.0316 to 100 rad/s. The results suggest that the two polymers have different morphologies although the styrene content and the diblock content are about the same for both polymers. Kraton D-1101, which has 1.5 times higher molecular weight, has 3–5 times higher rubbery modulus, compared to D-1102. The lower molecular weight polymer, D-1102, appears to have a larger amount of the mixed phase at the boundary. This is suggest by the lower temperature of the “domain disruption”, Tdd and the higher magnitude of tan δ at Tdd. This explains the difference in the rubbery moduli of the two polymers.

2021 ◽  
Vol 899 ◽  
pp. 67-72
Author(s):  
V.D. Polonik ◽  
A.S. Kukleva ◽  
N.D. Avdeev ◽  
M.D. Shlyaptseva ◽  
Vadim G. Nikol'skii ◽  
...  

This work presents the results of optimization compositions of polymer-modified binder (PMB) by a compromise task. The conducted study of influence two prescription factors – containing styrene-butadiene-styrene and sulfur – on which is a set of indicators of polymer-bitumen binders were carried out. The regularities of these factors of mutual influence were established by such indicators as the Fraas brittleness temperature, penetration, softening point, ductility. The dosages of SBS and sulfur have been determined by ensuring the achievement of the required level of PBB indicators in accordance with GOST R 52056-2003 «Bitumen-polymer road binders are based on styrene-butadiene-styrene block copolymers. Specifications».


2020 ◽  
Vol 4 (1) ◽  
pp. 25
Author(s):  
Christopher Ellingford ◽  
Atcharaporn Pengchaicharoen ◽  
Alan M. Wemyss ◽  
Chaoying Wan

Intrinsic modification of polybutadiene and block copolymer styrene–butadiene–styrene with the electrically conducting emeraldine salt of tetraaniline (TANI) via a three-step grafting method, is reported in this work. Whilst the TANI oligomer grafted at a similar rate to both polybutadiene and styrene–butadiene–styrene under the same conditions, the resulting elastomers exhibited vastly different properties. 1 mol% TANI-PB exhibited an increased relative permittivity of 5.9, and a high strain at break of 156%, whilst 25 mol% TANI-SBS demonstrated a relative permittivity of 6.2 and a strain at break of 186%. The difference in the behaviour of the two polymers was due to the compatibilisation of TANI by styrene in SBS through π-π stacking, which prevented the formation of a conducting TANI network in SBS at. Without the styrene group, TANI-PB formed a phase separated structure with high levels of TANI grafting. Overall, it was concluded that the polymer chain structure, the morphology of the modified elastomers, and the degree of grafting of TANI, had the greatest effect on the mechanical and dielectric properties of the resultant elastomers. This work paves the way for an alternative approach to the extrinsic incorporation of conducting groups into unsaturated elastomers, and demonstrates dielectric elastomers with enhanced electrical properties for use in actuation devices and energy harvesting applications.


1967 ◽  
Vol 40 (4) ◽  
pp. 1183-1199 ◽  
Author(s):  
C. W. Childers ◽  
G. Kraus

Abstract In butadiene styrene copolymers containing long block sequences chain segments associate with like segments to form a two phase structure. Properties of such polymers are dependent not only on composition and molecular weight but also on block sequence along the chain. Polymers containing two or more polystyrene blocks per molecule form networks and exhibit elastomeric properties in the uncured state resembling those of filler reinforced vulcanizates. This behavior is shown both by linear styrene-butadiene-styrene elastomers and multichain block copolymers branched in the polybutadiene blocks. A prominent loss tangent peak was observed around —40° C for the multichain polymers. Stress strain following prestretching and stress relaxation measurements indicate some shifting of polystyrene associations during stretching. Tensile strength is reduced by increasing temperature and addition of plasticizers. Reinforcement by polystyrene domains in vulcanized block copolymers is evident from tensile strength, dynamic modulus, and swelling measurements, but decreases with increased crosslinking. The number of styrene sequences in the primary molecules is less important after vulcanization as crosslinking destroys the individuality of the original polymer chains.


Polymer ◽  
1970 ◽  
Vol 11 (5) ◽  
pp. 268-276 ◽  
Author(s):  
Umberto Bianchi ◽  
Enrico Pedemonte ◽  
Antornio Turturro

Sign in / Sign up

Export Citation Format

Share Document