Surface Energy Effects for Small Holes or Particles in Elastomers

1970 ◽  
Vol 43 (4) ◽  
pp. 873-877 ◽  
Author(s):  
A. N. Gent ◽  
D. A. Tompkins

Abstract Expansion of a small spherical hole in a highly elastic solid is treated theoretically. Both elastic and surface energy terms are considered; the corresponding surface forces are assumed to be additive. The surface energy of the elastomer is assumed to be similar to that of simple liquids. Pressures or triaxial tensions required to inflate pre-existing holes to an indefinitely large size are calculated. Small holes require extremely large pressures, of the order of 1000 atm for holes of 10 A˚ radius. These results suggest a means of determining the distribution of hole sizes in elastomers and account, in principle, for experimental observations of cavitation processes. Detachment of the elastomer from a small rigid inclusion is treated in a similar way. The general absence of dilation or cavitation on stretching carbon black filled elastomers is thus accounted for solely in terms of the small size of these filler particles.

2021 ◽  
Author(s):  
Sankalp Gour ◽  
Deepu Kumar Singh ◽  
Deepak Kumar ◽  
Vinod Yadav

Abstract The present study deals with the constitutive modeling for the mechanical behavior of rubber with filler particles. An analytical model is developed to predict the mechanical properties of rubber with added filler particles based on experimental observation. To develop the same, a continuum mechanics-based hyperelasticity theory is utilized. The model is validated with the experimental results of the chloroprene and nitrile butadiene rubbers filled with different volume fractions of carbon black and carbon nanoparticles, respectively. The findings of the model agree well with the experimental results. In general, the developed model will be helpful to the materialist community working in characterizing the material behavior of tires and other rubber-like materials.


Wear ◽  
2008 ◽  
Vol 264 (7-8) ◽  
pp. 606-615 ◽  
Author(s):  
A. Le Gal ◽  
L. Guy ◽  
G. Orange ◽  
Y. Bomal ◽  
M. Klüppel

1999 ◽  
Vol 10 (4) ◽  
pp. 299-306 ◽  
Author(s):  
K. Sperling-Ischinsky ◽  
W.S. Veeman

2012 ◽  
Vol 45 (21) ◽  
pp. 8691-8701 ◽  
Author(s):  
Françoise Ehrburger-Dolle ◽  
Isabelle Morfin ◽  
Françoise Bley ◽  
Frédéric Livet ◽  
Gert Heinrich ◽  
...  

1995 ◽  
Vol 68 (4) ◽  
pp. 652-659 ◽  
Author(s):  
S. Maas ◽  
W. Gronski

Abstract The changes of the filler morphology of SBR vulcanizates loaded with 10 phr carbon black (N234 and N990) subjected to large strains were studied by Atomic Force Microscopy and image analysis. It was found that the filler particles tend to align in the force field. The average distance of the filler particles at the surface in the direction parallel and perpendicular to the strain direction is much smaller then according to affine deformation. The measurements give evidence of the inhomogeneous deformation of the rubber matrix and demonstrate the onset of failure at large deformation.


1983 ◽  
Vol 56 (2) ◽  
pp. 465-480
Author(s):  
J. L. Thiele ◽  
R. E. Cohen

Abstract The use of the creep T-jump experiment as a sensitive tool for elucidating the mechanistic behavior during the deformation of a complex material such as the carbon black filled elastomer has been illustrated. The activation energy for creep was determined as a function of stress for various vulcanizates. The effects of the choice of elastomer, and of variations in surface chemistry, structure, and loading of the filler, were studied. The T-jump results combined with electrical conductivity measurements confirmed the presence of a carbon black network which is considerably involved in the creep deformation process at low strain but not at high strain. In NR vulcanizates, there is a high-strain mechanism not observed in SBR vulcanizates; presumably strain-induced crystallization is responsible for the NR behavior. Oxidation of filler surfaces had essentially no effect on the creep deformation mechanisms, suggesting that, during creep, slippage of elastomers along the surface does not occur to any great extent for conventional or oxidized surfaces.


Sign in / Sign up

Export Citation Format

Share Document